
AR#00002 - QSPI Programming issues

Issue 1: Programming with Vivado /SDK tools failed
in case the boot mode is QSPI

Affected Series:
all Zynq Modules, especially 7 Series Zynq

Possible cases and solutions:

Vivado 2017.2 and older

Case1: flash is empty
no issue

Case 2: flash contains bootable design:
Possible Problem 1: running OS on zynq can prevent vivado to get access to QSPI

Solution 1: Stop booting for example on uboot console and try again
Solution 2: change boot mode some other a mode which does not boot any
design

Vivado 2017.3 up to 2018.3

Programming procedure has changed (), user must add additional FSBL now which initialise AR#70146
PS before Xilinx micro Uboot starts

Case 1: flash is empty
Problem 1: Default FSBL stops working with error stage,because it didn't find bootable
image on flash.

Solution 1: used special FSBL where boot mode is set fix to JTAG, see Xilinx
AR#70548

Case 2: flash contains bootable design
mostly no issue, default FSBL or special FSBL can be used to program flash
Possible Problem 1: running OS zynq can prevent vivado to get access to QSPI

Solution 1: Stop booting for example on uboot console and try again
Solution 2: change boot mode some other mode which

Vivado 2019.x up to 2020.2

Same programming procedure like 2017.3 up to 2019.3, but Vivado access to Zynqs seems to be
changed.

Case 1: flash is empty
Problem 1: Default FSBL stops working with error stage,because it didn't find bootable
image on flash.

Solution: used special FSBL where boot mode is set fix to JTAG, see Xilinx A
R#70548

Case 2: flash contains bootable design
Problem 1: Vivado starts design from QSPI Flash before selected FSBL will be
programmed. This seems to prevent Vivado from starting the selected FSBL correctly,
which leads to inconsistencies and terminates the programming

Solution 1: use the same FSBL which was used on the design which was
programmed

Table of Content

Issue 1: Programming with Vivado /SDK tools failed in case the boot mode is QSPI
Affected Series:
Possible cases and solutions:

Vivado 2017.2 and older
Vivado 2017.3 up to 2018.3
Vivado 2019.x up to 2020.2
Vivado 2021.x up and newer

Issue 2: Programming with third party tools or own software (baremetal, uboot) failed, in case PS is configured for x4 mode
Affected Series:
Possible cases and solutions:

Issue 3: Using more than 16MB flash on 7 Series Zynq
Affected Series:
Possible cases and solutions:

https://www.xilinx.com/support/answers/70148.html
https://www.xilinx.com/support/answers/70548.html
https://www.xilinx.com/support/answers/70548.html
https://www.xilinx.com/support/answers/70548.html

Solution 2: change boot mode some other a mode which does not boot any
design and use special FSBL

Possible Problem 2: running OS zynq can prevent vivado to get access to QSPI
Solution 1: Stop booting for example on uboot console and try again
Solution 2: change boot mode some other a mode which does not boot any
design

Vivado 2021.x up and newer

It's on evaluation.

7 Series Zynq: It seems to be not longer possible (we are checking possible solutions at the
moment)

Workaround: Use older Vivado Version for programming or change Boot Mode to
JTAG only if possible

U+ Zynq: It seems to work with default FSBL now. Modified FSBL for Flash programming
with Boot Mode set to JTAG on FSBL only does not longer work

Issue 2: Programming with third party tools or own
software (baremetal, uboot) failed, in case PS is
configured for x4 mode

Affected Series:
all Zynq Modules, especially 7 Series Zynq

Possible cases and solutions:
Problem 1: QE Bit of the QSPI Flash is not set and X4 access failed.

Solution: Write QSPI Flash one time with Xilinx Tools(Vivado or SDK), this will set QE
Bit correctly. This only needs to be done once in case of a problem

Issue 3: Using more than 16MB flash on 7 Series
Zynq

Affected Series:
all 7 Series Zynq with more than 16MByte QSPI Flash

Possible cases and solutions:
Problem: Drivers will change extended address register, in case more than 16MB is used. The
extended address register is sticky, which means that only external reset events (like power
cycle of the flash or external reset of the flash) can clear it. After a power cycle or an external
reset of the QSPI flash, a recovery time needs to expire before accessing the device (see QSPI
flash datasheet for more details). See also Xilinx AR#57744

Solution:

Solution Good Bad

https://www.xilinx.com/support/answers/57744.html

0 Use single
16MByte
flash

There are no
issues. Can be
implemented as
assembly option,
no PCB change
needed, only BOM
change.

SPI Flash is limited to 16MByte.

1 Use
stacked
16MByte
flashes

32MB can be
safely accessed at
full speed, only 1
extra pin needed
from MIO,

Hardware (PCB) change, more space needed on
PCB.

2 Use 16MB
flash,
parallel
configuration

32MB can be
safely accessed at
full speed, very fast
XiP.

Hardware (PCB) change, more space needed on
PCB, almost all Bank500 pins are used for Flash.

3 Limit the
access to
lower
16Mbytes

No change of code
or hardware.

Only 16MBytes can be accessed safely, may
have to take special actions to actually limit the
access to lower 16Mbyte

4 Preload
everything
above
16Mbytes
in FSBL,
limit
access to
lower
16Mbytes
after FSBL
handout

Only FSBL
changes needed,
use 24 bit bit
addressing SPIx4
commands and not
EAR register.

Access above 16MByte should not be performed
from SSBL or application code, may have to take
special actions to actually limit the access to
lower 16Mbyte. All code above 16MByte has to
be read in FSBL as one chunk, as last SPI Read
command has to use address in lower 16Myte.

5 Preload
everything
above
16Mbytes
in FSBL,
limit
access to
lower
16Mbytes
after FSBL
handout

Only FSBL
changes needed,
use of 32 bit
addressing SPIx1
commands and not
EAR register.

Access above 16MByte should not be performed
from SSBL or application code, may have to take
special actions to actually limit the access to
lower 16Mbyte. Flash reads above 16MByte in
the FSBL are slower as the use x1 mode.

6 Rewrite
FSBL,
SSBL and
OS/RTOS
Drivers to
avoid
using EAR
register
and
"legacy
mode"

Truly safe solution,
no hardware
changes no
restriction on SPI
Flash Partitioning.
Very good solution
for bare metal
applications.

A lot of Code and drivers to modify, the patches
have to be applied again after each software
release. Access to SPI Flash above 16Mbyte
must be done using SPIx1 mode command set,
when using good speed optimized code the
performance penalty is not that bad.

7 Place
"reboot.
bin" at
16MByte
boundary

No change of code
of hardware.

256KByte sector at 16Mbyte offset in SPI Flash is
"reserved" it must contain the "reboot.bin" image,
special tool and/or scripts are needed to
assemble the SPI Flash images to satisfy this
requirement. If reset occurs while EAR =! 0 then
Zynq PS is doing double reset sequence, first the
reboot.bin executes, then it clears EAR and
forces Zynq ARM core to reset followed by normal
boot from Flash Address 0. However as reboot.
bin does not perform any peripheral or memory or
PLL initialization it executes very fast so the extra
delay in startup is small. Boot history registers are
also affected as there is sometimes extra reset
involved during the boot. The likelihood of the
double-reset to happen can be reduced if SSBL

and application software do always include a
dummy read from lower 16MByte after accesses
to addresses above 16MB.

8 Duplicate
FSBL at
16MByte
boundary

Small change of
FSBL, same FSBL
at offset 0 and
16MByte. Code
change affects only
EAR register, all
SPI Reads are still
done using x4
commands. Same
FSBL executes
always no matter
from what offset it
was loaded, there
is no significant
change in startup
time. There is no
extra reset involved.

256KByte sector at 16Mbyte offset in SPI Flash is
"reserved" it must contain the "boot.bin" image
(with the same FSBL as at offset 0), special tool
and/or scripts are needed to assemble the SPI
Flash images to satisfy this requirement.

9 Duplicate
EAR
modified
FSBL at
16MByte
boundary

Small change of
FSBL, mofidied
FSBL at offset
16MByte. Code
change affects only
EAR register, all
SPI Reads are still
done using x4
commands.
Functionally same
FSBL executes
always no matter
from what offset it
was loaded, there
is no significant
change in startup
time, FSBL at
normal start offset
0 is not modified at
all. There is no
extra reset involved.

256KByte sector at 16Mbyte offset in SPI Flash is
"reserved" it must contain the "boot.bin" image
(with the EAR patched FSBL as at offset 0),
special tool and/or scripts are needed to
assemble the SPI Flash images to satisfy this
requirement. Two versions of the same FSBL
have to be compiled each time when FSBL is
changed or generated.

10 System
Controller
in external
CPLD
forcing SPI
Flash reset
using
Flash reset
pin.

See also Xil
inx
AR#57744

Small changes of
software (need to
pull one MIO Pin to
fixed level).

One extra MIO pin is wasted. CPLD has to detect
reliable all types of resets, this is only possible
with software assistance. This detection may fail
during debug sessions, so extra operation mode
may have to be implemented to disable the CPLD
reboot resets temporary. Have to use special SPI
Flash IC with dedicated Reset input.

11 System
Controller
in external
CPLD
forcing SPI
Flash reset
by
controlling
the power
rail of the
Flash.

See also Xil
inx
AR#57744

Small changes of
software (need to
pull one MIO Pin to
fixed level). Can
use Flash IC with
no dedicated Reset
pin.

One extra MIO pin is wasted. CPLD has to detect
reliable all types of resets, this is only possible
with software assistance. This detection may fail
during debug sessions, so extra operation mode
may have to be implemented to disable the CPLD
reboot resets temporary. CPLD has to be able to
control the power rail of the SPI Flash using FET
switch, or then be able to control the power
supply that delivers the power to the Flash. There
is extra FET and CPLD control pin needed, or if
Flash shares power with other components then
the complete power rail has to be turned off to
implement Flash Reset.

12 System
Controller

Small changes of
software (need to

One extra MIO pin is wasted. CPLD has to detect
reliable all types of resets, this is only possible

https://www.xilinx.com/support/answers/57744.html
https://www.xilinx.com/support/answers/57744.html
https://www.xilinx.com/support/answers/57744.html
https://www.xilinx.com/support/answers/57744.html
https://www.xilinx.com/support/answers/57744.html
https://www.xilinx.com/support/answers/57744.html

in external
CPLD
forcing SPI
Flash reset
by using
JTAG
Boundary
scan
commands.

pull one MIO Pin to
fixed level). Can
use Flash IC with
no dedicated Reset
pin. No need to
switch off power
from SPI Flash.

with software assistance. This detection may fail
during debug sessions, so extra operation mode
may have to be implemented to disable the CPLD
reboot resets temporary. CPLD has to be
implement a JTAG functionality and play back a
sequence that shifts in Reset command into SPI
Flash. System Controller CPLD has to have
access to Zynq JTAG and be large enough to
implement the JTAG sequence playback.

13 System
Controller
in external
CPLD
implementi
ng
watchdog
and fall-
back from
SPI mode
to SD Card
boot mode.

No software
changes.

SD card must be available as boot media all the
times.

14 External
Watchdog
forcing full
power off
cycle.

No software
changes. No
hardware changes
to the module/SoM.

Hardware changes to the system or base board.

15 Limit SPI
Flash
access to
Lower
16MB, use
eMMC for
main
storage.

No changes if
eMMC is supported
and available in the
target hardware.
Large nonvolatile
storage in eMMC.

	AR#00002 - QSPI Programming issues

