TE0705 CPLD

Overview

Terbever wordenbergter 4: LCMX02-1200HC

• 1.1 Feature Summary

- Power Management Revision and supported PCB Revision
 Reserving angement revision

- BooP Mode Contremption
 FPGA UART Distingl Description
 I2C to GPIO
 2.2.1 User Dip Switch
 2.2.2 JTAG

• 2.2.2.1 PCB REV04 (Default)

Firmware Revision and supported PCB Revision

2.2.4 Reset See Document Change HistoryBoot mode

• 2.2.5.1 PCB REV04 (Default) 2.2.5.2 PCB REV03 (Optional)

Product Specification

2.2.8 NOSEQ
 2.2.9 PGOOD

Port Description On-board LEDs

2.3.1 I2C to GPIO registers

Name Appt. A: Cl VHD Name $^{\circ}$ 3.1	Revision Changes	Pin	Pull up/ down	Bank Power	Description
ACBU \$ 4Appx. B: Le	Document Change I gal Notices Data Privacy Document Warranty Limitation of Liability	96	UP	3.3V	FTDI / It can be read via i2c to GPIO. (GPIO_input(22))
ACBUS5 ° 4.5 ° 4.6	Copyright Notice Technology License Environmental Prote REACH, RoHS and Intents	ction	UP	3.3V	FTDI / It can be read via i2c to GPIO. (GPIO_input(23))
ADBUS4	out	98	NONE	3.3V	FTDI / M_TCK is connected to ADBUS4.
ADBUS7	out	97	UP	3.3V	FTDI / currently_no t_used
BDBUS0	inout	87	NONE	3.3V	FTDI / Module UART0-RX << FTDI
BDBUS1	inout	86	NONE	3.3V	FTDI /Module UART0-TX >> FTDI
C_TCK	out	81	DOWN	3.3V	TCK JTAG port pin connected to Module
C_TDI	out	84	DOWN	3.3V	TDI JTAG port pin connected to Module

C_TDO	in	83	DOWN	3.3V	TDO JTAG port pin connected to Module
C_TMS	out	85	UP	3.3V	TMS JTAG port pin connected to Module
CM0	in	67	UP	3.3V	DIP Switch S3-M1 / Used to select FMC_VADJ voltage
CM1	in	66	UP	3.3V	DIP Switch S3-M2 / Used to select FMC_VADJ voltage
EN_FMC	out	35	NONE	3.3V	Power SoC (EN5335QI) power on signal (VADJ enable)
EN1	out	53	UP	3.3V	Power Enable Pin for CPLD of module
JTAGEN		82	UP	3.3V	Enable JTAG access to carrier CPLD for Firmware update (Zero: JTAG routed to module, One: CPLD access) Set DIP Switch S3- JTAGEN (S3- C) to ON, for module access.
JTAGMODE	out	58	NONE	3.3V	Enable JTAG access to module CPLD for firmware programming. If JTAGMODE = '0' JTAG port is routed to FPGA of module otherwise JTAG port is routed to CPLD of module.
M_TCK	in	91	UP	3.3V	TCK JTAG port pin connected to FTDI chip
M_TDI	in	94	UP	3.3V	TDI JTAG port pin connected to FTDI chip
M_TDO	out	95	UP	3.3V	TDO JTAG port pin connected to FTDI chip
M_TMS	in	90	UP	3.3V	TMS JTAG port pin connected to FTDI chip
MIO10	inout	32	UP	3.3V	MIO / I2C SCL pin of CPLD of TE0705
MIO11	inout	31	UP	3.3V	MIO / I2C SDA pin of CPLD of TE0705
MIO12	inout	39	NONE	3.3V	MIO
MIO13	inout	34	NONE	3.3V	MIO

MIO14	inout	40	NONE	3.3V	MIO / Module UART0-RX << BDBUS0
MIO15	inout	30	NONE	3.3V	MIO / Module UART0- TX >> BDBUS1
MODE	out	28	DOWN	3.3V	Boot mode select pin for Zynq Devices
NOSEQ	inout	29	UP	3.3V	For TE0715 module is connected to M_TMS JTAG pin for programming the CPLD of TE0715. For other modules this pin is used as GPIO.
PGOOD	inout	27	UP	3.3V	For TE0715 module is connected to M- TDO JTAG pin for programming the CPLD of TE0715. For other modules this pin is used as either GPIO pin or boot mode selection pin.
PHY_LED1	out	45	NONE	3.3V	RJ45 connector right LED Green LED anode and yellow LED cathode / State of this pin indicates PGOOD and NOSEQ signal state.
PHY_LED1_A	out	49	NONE	3.3V	RJ45 connector right LED Green LED cathode and yellow LED anode / State of this pin indicates PGOD and NOSEQ signal state.
PHY_LED2	out	47	NONE	3.3V	RJ45 connector left LED Green LED cathode and yellow LED anode / State of this pin indicates EN_FMC (Power Ok of EN5335QI PowerSoC)
PHY_LED2_A	out	48	NONE	3.3V	RJ45 connector left LED Green LED anode and yellow LED cathode / State of this pin indicates EN_FMC (Power Ok of EN5335QI PowerSoC)
POK_FMC	in	36	UP	3.3V	FMC VADJ Power Good

RESIN	out	54	UP	3.3V	Module reset that connected to S2 push button
S1	in	75	UP	3.3V	User button
S2	in	74	UP	3.3V	User button / Global Reset push button
SD_DETECT	in	42	UP	3.3V	SD card detection / Used for FPGA Boot Mode selection. Connected to MODE pin ,if USR0 = OFF for PCB REV04.
SD_WP	in	43	UP	3.3V	SD write protect
ULED1	out	78	NONE	3.3V	LED D6 / Connected to MODE0 signal . If MODE0='1' FMC_VADJ = 1.8V Connected to GPIO_output(0) , if S1 push button is pushed.
ULED2	out	77	NONE	3.3V	LED D7 / Connected to MODE1 signal. If MODE1=1' FMC_VADJ = 2.5V Connected to GPIO_output(1), if S1 push button is pushed.
ULED3	out	76	NONE	3.3V	LED D8 / Connected to MODE2 signal. If MODE2='1' FMC_VADJ = 3.3V Connected to GPIO_output(2) , if S1 push button is pushed.
ULED4	out	65	NONE	3.3V	LED D9 / Connected to MODE3 signal. If MODE3='1' FMC_VADJ = 1.8V Connected to GPIO_output(3) , if S1 push button is pushed.
ULED5	out	71	NONE	3.3V	LED D4 / Connected to RESET push button (S2) Connected to GPIO_output(4), if S1 push button is pushed.

ULED6	out	70	NONE	3.3V	LED D15 / Connected to SD_DETECT. f LED is ON> MODE = '1' (QSPI boot mode) else MODE = '0' (SD card boot mode) Connected to GPIO_output(5) , if S1 push button is pushed.
ULED7	out	69	NONE	3.3V	LED D14 / Connected to UART0-TX Connected to GPIO_output(6), if S1 push button is pushed.
ULED8	out	68	NONE	3.3V	LED D5 / Connected to UART0-RX Connected to GPIO_output(7), if S1 push button is pushed.
USB_OC	in	99	UP	3.3V	USB Over Current
USR0 [*]	in	64	NONE	3.3V	DIP Switch S4-1 / Used to determine if TE0715 CPLD access is activated. If USR0 = ON Access to TE0715 CPLD , If USR0 = OFF No access to TE0715 CPLD
USR1 [*]	in	61	NONE	3.3V	DIP Switch S4-2 / USR1 can set or reset NOSEQ, if USR0 = OFF
USR2 [*]	in	60	NONE	3.3V	DIP Switch S4-3 / USR2 can set set or reset PGOOD, if USR0 = OFF
USR3 [*]	in	59	NONE	3.3V	DIP Switch S4-4 / Connected to JTAGMODE signal for accessing to CPLD of module. USR3 = ON No access to CPLD of module, USR3 = OFF Access to CPLD of module
VID0	out	37	NONE	3.3V	VADJ Voltage selection of power SoC (EN5335QI)
VID1	out	38	NONE	3.3V	VADJ Voltage selection of power SoC (EN5335QI)
VID2	out	41	NONE	3.3V	VADJ Voltage selection of power SoC (EN5335QI)

X6	in	19	NONE	3.3V	Connection pin between CPLD of carrier board and FPGA on the module via B2B connector. It can be read via i2c to GPIO.(GPIO_input (31))
YO	in	15	DOWN	3.3V	Connection pin between CPLD of carrier board and FPGA on the module via B2B connector. It can be read via i2c to GPIO.(GPIO_input (24))
Y1	in	14	DOWN	3.3V	Connection pin between CPLD of carrier board and FPGA on the module via B2B connector. It can be read via i2c to GPIO.(GPIO_input (25))
Y2	in	13	DOWN	3.3V	Connection pin between CPLD of carrier board and FPGA on the module via B2B connector. It can be read via i2c to GPIO.(GPIO_input (26))
Y3	in	10	DOWN	3.3V	Connection pin between CPLD of carrier board and FPGA on the module via B2B connector. It can be read via i2c to GPIO.(GPIO_input (27))
Y4	in	9	NONE	3.3V	Connection pin between CPLD of carrier board and FPGA on the module via B2B connector. It can be read via i2c to GPIO.(GPIO_input (28))
Y5	in	8	NONE	3.3V	Connection pin between CPLD of carrier board and FPGA on the module via B2B connector. It can be read via i2c to GPIO.(GPIO_input (29))

Y6	in	7	NONE	3.3V	Connection pin between CPLD of carrier board and FPGA on the module via B2B connector. It can be read via i2c to GPIO.(GPIO_input (30))
----	----	---	------	------	---

*Note: USR dip switch (S4-Dip Switch) does not exist in PCB revision 3 or older.

Functional Description

User Dip Switch

User has 8 dip switches and two push buttons in total on the board. In the following tables you can find more information about it.

DIP Switch S3						
S3-1	S3-2	S3-3	S3-4	Description		
СМ1**	СМ0**	JTAGEN**	MIO0*	JTAGEN set carrier board CPLD into the chain for firmware update.		

*Note: MIO0 is not connected to CPLD chip.

**Pin names in the schematic of board. Names on the board (labels) : CM1 M2 , CM0 M1, JTAGEN ENJTAG

DIP Switch S4 [*]						
S4-1	S4-2	S4-3	S4-4	Description		
USR0	USR1	USR2	USR3			

*Note: This dip switch exists only for PCB revision 4 or later.

USRO	Description
OFF	No access to TE0715 CPLD
ON	Access to TE0715 CPLD
USR1	Description
OFF	NOSEQ = '0' if USR0 = OFF else NOSEQ = M_TMS
ON	NOSEQ = '1' if USR0 = OFF else NOSEQ = M_TMS
USR2	Description
OFF	PGOOD = '0' if USR0 = OFF else PGOOD = 'Z'
ON	PGOOD = '1' if USR0 = OFF else PGOOD = 'Z'

USR3	Description
OFF	JTAGMODE = '0' JTAG routed to module FPGA
ON	JTAGMODE = '1' Access to CPLD of module

JTAG

In normal mode JTAG is routed directly to the module. JTAGEN set carrier board CPLD into the chain for firmware update. Set S3-3 (ENJTAG) to OFF to get access to carrier CPLD. JTAGMODE set module CPLD into the chain for firmware update. In normal mode JTAG is routed directly to FPGA. To access CPLD of TE0715 JTAG port must be routed to special pins same as NOSEQ pin. Therefore in PCB REV04 or later USR0 is used to access CPLD of TE0715 module. For PCB REV03 CM0(S3-2) and CM1(S3-1) dip switches will be used for this purpose. In this case user must be careful because these dip switches are used to select FMC_VADJ output voltage too.

() Warning

For some 4x5 modules if FMC_VADJ voltage is set incorrectly, the FPGA can be damaged !

More information about JTAG pins can be found in the following table:

Pin	Connected to	Condition for	* P CB nREW044 for *	l RBB SCEØØØN	Connected to	Condition for	• P CB nREEW044 foon *	l RIBB SCEIØØØN
M_TMS	NOSEQ	USR0 = ON	CM1(S3-1) =ON and CM0 (S3-2)=ON	Access to TE0715 CPLD	C_TMS	USR0 = OFF	CM1(S3-1) =OFF or CM0 (S3-2)=OFF	No access to TE0715 CPLD. In this case NOSEQ can be used as user IO.
М_ТСК	MODE	USR0 = ON	CM1(S3-1) =ON and CM0 (S3-2)=ON	Access to TE0715 CPLD	с_тск	USR0 = OFF	CM1(S3-1) =OFF or CM0 (S3-2)=OFF	No access to TE0715 CPLD. In this case MODE will be used as SD card detection.
M_TDI	EN1	USR0 = ON	CM1(S3-1) =ON and CM0 (S3-2)=ON	Access to TE0715 CPLD	C_TDI	USR0 = OFF	CM1(S3-1) =OFF or CM0 (S3-2)=OFF	No access to TE0715 CPLD. In this case EN1 is '1'.
C_TDO	PGOOD	USR0 = ON	CM1(S3-1) =ON and CM0 (S3-2)=ON	Access to TE0715 CPLD	M_TDO	USR0 = OFF	CM1(S3-1) =OFF or CM0 (S3-2)=OFF	No access to TE0715 CPLD. In this case PGOOD can be used as user IO.

*Note: This case is valid if jed file for accessing to TE0715 CPLD is programmed on the TE0705 carrier board CPLD.

Pin	CPLD Pin	Connected to	Description
JTAGEN	82	S3-3 Dip Switch (ENJTAG)	To access CPLD of carrier board, JTAGEN must be set to '1'. (ENJTAG (S3-3) = OFF)
JTAGMODE	58	B2B JB1-90	To access CPLD of module this pin must be set to high.

PCB REV04 (Default)

Status	S4-1(USR0)	S4-4(USR3)	S3-3(ENJTAG)	Description
Access to carrier board CPLD			OFF	
Access to FPGA of module	OFF	OFF	ON	
Access to CPLD of module	OFF	ON	ON	
Access to the TE0715 CPLD	ON	ON	ON	

JTAGMODE	Condition	Description
0	USR3 = OFF	To access FPGA of module
1	USR3 = ON	To access CPLD of module

PCB REV03 (Optional)

Status	CM1(S3-1)	CM0(S3-2)	S3-3(ENJTAG)	FMC_VADJ	Description
Access to carrier board CPLD			OFF		
Access to FPGA of module	OFF	OFF	ON	1.8V	
Access to FPGA of module	OFF	ON	ON	3.3V	
Access to FPGA of module	ON	OFF	ON	2.5V	
Access to CPLD of module [*]	ON	ON	ON	1.8V	Attention: It is exists two separate jed file to access the CPLD on the TE0715 module and other modules.

*For accessing to CPLD of TE0715, special jed file in optional folder must be programmed on the CPLD of carrier board TE0705. If jed file for accessing to CPLD of TE0715 (Access to TE0715 CPLD) is programmed on the CPLD of carrier board, CPLD of other modules can not be programmed more. In this case, if user need to update firmware CPLD of the module, user should program other jed file (No Access to TE0715 CPLD) on the carrier board CPLD.

JTAGMODE	Condition	Description
0	CM1(S3-1)= OFF or CM0(S3-2)= OFF	To access FPGA of module
1	CM1(S3-1)= ON and CM0(S3-2)= ON	To access CPLD of module

Power

To adjust output voltage of EN5335QI power SoC (FMC_VADJ) CM1(S3-1)and CM0(S3-2) are used. EN_FMC pin is for activating this power SoC. EN_FMC signal will be set to '1' to enable the power SoC after power on. VID0, VID1 and VID2 are connected to EN5335QI PowerSoC chip to select output voltage.

EN5335QI Power SoC Voltage Select Lines					
VID2	VID1	VID0	Vout	Description	
0	0	0	3.3V		
0	0	1	2.5V		
0	1	0	1.8V		
0	1	1	1.5V	Not selectable	
1	0	0	1.25V	Not selectable	
1	0	1	1.2V	Not selectable	
1	1	0	0.8V	Not selectable	
1	1	1	Reserved		

EN5335QI Power SoC output voltage	CM1(S3-1)	CM0(S3-2)	Description
1.8V	OFF	OFF	Access to FPGA of module for PCB REV03
3.3V	OFF	ON	Access to FPGA of module for PCB REV03
2.5V	ON	OFF	Access to FPGA of module for PCB REV03
1.8V	ON	ON	Access to TE0715 CPLD or CPLD of other modules for PCB REV03*

*There are for PCB REV03 two jed files in optional folder. One of them is for accessing to TE0715 CPLD and other jed file is for accessing to other 4x5 modules except TE0715. For PCB REV03 both CPLD of TE0715 and other modules except TE0715 can not be accessed via one jed file for CPLD of carrier board.

Reset

RESIN pin (active low) of module can be set by S2 button.

Pin	CPLD Pin	Connected to	Description
RESIN	54	S2 push button / B2B JB2-17	Active-low

Boot mode

When SD card is plugged, SD_DETECT signal will be set to '0'. If CM0(S3-2) and CM1(S3-1) for PCB REV03 and USR0 for PCB REV04 are not set for accessing to CPLD of TE0715 module, SD_DETECT will be connected to MODE pin. MODE pin is responsible to set boot mode. If MODE pin is set to high, QSPI boot mode is selected else SD card boot mode is chosen.

Pin	CPLD Pin	In hardware connected to	Connected to (Firmware of PCB REV04)	Connected to (Firmware of PCB REV03)	Description
-----	----------	-----------------------------	--	--	-------------

SD_DETECT	42	SD card detection pin	MODE pin if USR0 = OFF	MODE pin if CM1 (S3-1)= OFF or CM0(S3-2)= OFF	
-----------	----	-----------------------	---------------------------	---	--

PCB REV04 (Default)

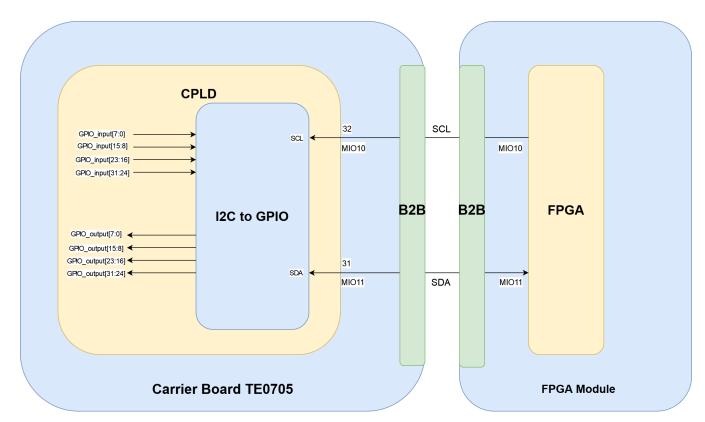
Boot Mode*	S4-3 (USR2)	SD Card	Description
JTAG Mode	OFF	Plugged	PGOOD = '0' , MODE = '0'
eMMC Mode	OFF	Removed	PGOOD = '0' , MODE = '1'
SD Card Boot Mode	ON	Plugged	PGOOD = '1' , MODE = '0'
QSPI Boot Mode	ON	Removed	PGOOD = '1' , MODE = '1'

*It is valid only for SoC. Note that after any change in dip switches carrier board must be reset, to change boot mode correctly.

PCB REV03 (Optional)

The following boot mode table is not valid while CM1 = ON and CM0 = ON and jed file for accessing to TE0715 CPLD is programmed on the CPLD of carrier board for all 4x5 modules.

Boot Mode*	vir_usr2**	SD Card	Related Command in linux ^{***}	Related Command in FSBL ^{***}	Description
JTAG Mode	1	Plugged	i2cset -y 0 0x30 0x02 0x01	iic_write (0x30,0x02, 0x01)	PGOOD = '0' , MODE = '0'
eMMC Mode	1	Removed	i2cset -y 0 0x30 0x02 0x01	iic_write (0x30,0x02, 0x01)	PGOOD = '0' , MODE = '1'
SD Card Boot Mode	0	Plugged	i2cset -y 0 0x30 0x02 0x00	iic_write (0x30,0x02, 0x00)	PGOOD = '1' , MODE = '0'
QSPI Boot Mode	0	Removed	i2cset -y 0 0x30 0x02 0x00	iic_write (0x30,0x02, 0x00)	PGOOD = '1' , MODE = '1'


*It is valid only for SoC. Note that after any change in vir_usr2 oder SD Card detection switch carrier board must be reset, to change boot mode correctly.

**vir_usr2 can be changed only via I2C to GPIO in linux console or in FSBL code. Its default value is '0'. If no I2C to GPIO is designed in Vivado and Linux, vir_usr2 can not be changed. Because of its default value after power on ('0') user can choose only SD card boot mode and QSPI boot mode by plugging and removing the SD card respectively.

***After setting vir_usr2 via I2C to GPIO it is necessary to reset the board manually to change boot mode.

I2C to GPIO

I2C to GPIO is a subsystem in firmware of CPLD that provides an i2c interface that writes received data to GPIO_output 8 bit registers or reads 8 bit GPIO_input registers and send read data to i2c bus.

I2C bus is connected to MIO10 (SCL signal) and MIO11 (SDA signal). MIO10 to MIO15 are direct connection between CPLD of TE0705 and FPGA on the module through B2B connector. If in FPGA design exists no i2c interface for MIO10 and MIO11, this block will be unused. More information about MIO10 to MIO15 are shown in the following table for whole Trenz Electronic 4x5 modules and TE0705 carrier board:

B2B Pin	B2B JB1-96	B2B JB1-94	B2B JB1- 100	B2B JB1-98	B2B JB1-91	B2B JB1-86	
Carrier board	Label / Firmware function	Description					
TE0705	MIO10 / I2C- SCL	MIO11 / I2C- SDA	MIO12 / GPIO	MIO13 / GPIO	MIO14 / UART0-RX	MIO15 / USRT0-TX	MIO10 and MIO11 are used in CPLD firmware as I2C SCL and SDA respective ly.
B2B Pin	B2B JM1- 95	B2B JM1- 93	B2B JM1- 99	B2B JM1- 97	B2B JM1- 92	B2B JM1- 85	
Module	Label / Chip pin	Description					
TEM0007	I2C_CON_SCL / A3	I2C_CON_SDA / E3	UART_CON_TX /C2	USRT_CON_R X / D3	UART_RX / H2	UART_TX / H5	MIO10 and MIO11 are already set in test_design of TEM0007 as SCL and SDA respectively.

TE0710	B14_IO2 / R10	B14_IO6 / L18	B14_IO7 / T11	B14_IO3 / M18	B16_IO4 / A8	B16_IO0 / B8	By using an external IIC IP core B14_IO2 and B14_IO6 can be used as I2C SCL and SDA respectively.
TE0711	B14_IO2 / M13	B14_IO6 / L18	B14_IO7 / R16	B14_IO3 / M18	B14_IO4 / N17	B14_IO0 / R10	By using an external IIC IP core B14_IO2 and B14_IO6 can be used as I2C SCL and SDA respectively.
TE0712	B14_L4_P / T21	B14_L9_N / Y22	B14_L24_N / R17	B14_L4_N / U21	B14_L24_P / P16	B14_L18_N / U18	By using an external IIC IP core B14_L4_P and B14_L9_N can be used as I2C SCL and SDA respectively.
TE0713	B14_L4_P / T21	B14_L9_N / Y22	B14_L24_N / R19	B14_L4_N / U21	B14_L24_P / P19	B14_L18_N / U18	By using an external IIC IP core B14_L4_P and B14_L9_N can be used as I2C SCL and SDA respectively.
TE0741	MIO10 / B14_L22	MIO11 / B14_K21	MIO12 / B14_H23	MIO13 / B14_K22	MIO14 / B14_J21	MIO15 / B14_G24	By using an external IIC IP core B14_L22 and B14_K21 can be used as I2C SCL and SDA respectively.
TE0841	B65_SCL / Y19	B65_SDA / AA19	B65_L3_N / AF23	B65_L3_P / AF22	B65_L2_N / AH24	B65_L4_N / AG24	By using an external IIC IP core B65_SCL and B65_SDA can be used as I2C SCL and SDA respectively.
TE0715	MIO10 / G16	MIO11 / B19	MIO12 / C18	MIO13 / A17	MIO14 / B17	MIO15 / E17	MIO10 and MIO11 can be set as SCL and SDA for I2C0 of TE0715 respectively.
TE0720	MIO10 / G7	MIO11 / B4	MIO12 / C5	MIO13 / A6	MIO14 / B6	MIO15 / E6	MIO10 and MIO11 are already set as as SCL and SDA for I2C0 in test_design of TE0720 respectively.

TE0820	MIC26 / L15	MIO27 / J15	MIO28 / K15	MIO29 / G16	MIC30 / F16	MIO31 / H16	MIO26 and MIO27 can be set only for I2C0 of FPGA and this bus is already used for another components same as EEPROM and PLL chip. If MIO10 and MIO11 are used as I2C bus for data communication with CPLD, then there are no access to PLL and EEPROM chip.
TE0821	MIO26 / L15	MIO27 / J15	MIO28 / K15	MIO29 / G16	MIO30 / F16	MIO31 / H16	MIO26 and MIO27 can be set only for I2C0 of FPGA and this bus is already used for another components same as EEPROM and PLL chip. If MIO10 and MIO11 are used as I2C bus for data communication with CPLD, then there are no access to PLL and EEPROM chip.
TE0823	MIO26 / L15	MIO27 / J15	MIO28 / K15	MIO29 / G16	MIO30 / F16	MIO31 / H16	MIO26 and MIO27 can be set only for I2C0 of FPGA and this bus is already used for another components same as EEPROM and PLL chip. If MIO10 and MIO11 are used as I2C bus for data communication with CPLD, then there are no access to PLL and EEPROM chip.

There are more additional connections between CPLD and FPGA on the module , that are listed in the following table:

CPLD Pin	Carrier board B2B Pin	Module B2B Pin	In firmware used as	Description
X6	B2B JB1-84	B2B JM1-83	No specific function. It can only be read by GPIO_input.	It can be read via i2c to GPIO. (GPIO_input (31))
YO	B2B JB2-76	B2B JM2-75	No specific function. It can only be read by GPIO_input.	It can be read via i2c to GPIO. (GPIO_input (24))

Y1	B2B JB2-78	B2B JM2-77	No specific function. It can only be read by GPIO_input.	It can be read via i2c to GPIO. (GPIO_input (25))
Y2	B2B JB2-82	B2B JM2-81	No specific function. It can only be read by GPIO_input.	It can be read via i2c to GPIO. (GPIO_input (26))
Y3	B2B JB2-84	B2B JM2-83	No specific function. It can only be read by GPIO_input.	It can be read via i2c to GPIO. (GPIO_input (27))
Y4	B2B JB2-86	B2B JM2-85	No specific function. It can only be read by GPIO_input.	It can be read via i2c to GPIO. (GPIO_input (28))
Y5	B2B JB2-88	B2B JM2-87	No specific function. It can only be read by GPIO_input.	It can be read via i2c to GPIO. (GPIO_input (29))
Y6	B2B JB2-90	B2B JM2-89	No specific function. It can only be read by GPIO_input.	It can be read via i2c to GPIO. (GPIO_input (30))

It is depends on the module , which bank and pin of FPGA is connected to the module B2B pins that are written in this table.

UART

Pin	CPLD Pin	Connected to	Module UART Signal	Description
MIO14	40	B2B JB1-91	UART0-RX	In firmware MIO14 <= BDBUS0
MIO15	30	B2B JB1-86	UART0-TX	In firmware BDBUS1 <= MIO15

NOSEQ

NOSEQ is used as TMS signal of JTAG port to program CPLD of TE0715 module. NOSEQ can be used as GPIO pin by user too. It can be controlled differentially for PCB REV03 and REV04 as in the following table is shown:

NOSEQ	Condition for PCB REV04 or later	Condition for PCB REV03	Related command in linux	Description
'0'	USR1 = OFF and USR0 = OFF	GPIO_output [15:8] = 0x01, if access to TE0715 is programmed on the carrier board CPLD and CM1(S3-1)= OFF or CM0(S3-2)= OFF GPIO_output [15:8] = 0x01, if no access to TE0715 CPLD is programmed on the carrier board CPLD, it is not dependent on CM0(S3-2) and CM1 (S3-1).	i2cset -y 0 0x30 0x01 0x01	If module has no i2c interface for MIO10 and MIO11 pins in vivado and linux design , this option for PCB REV03 does not work.

'1'	USR1 = ON and USR0 = OFF	GPIO_output [15:8] = 0x00 , if access to TE0715 is programmed on the carrier board CPLD and CM1(S3-1)= OFF or CM0(S3-2)= OFF	i2cset -y 0 0x30 0x01 0x00	If module has no i2c interface for MIO10 and MIO11 pins in vivado and linux design , this option for PCB REV03 does not work.
		GPIO_output [15:8] = 0x00, if no access to TE0715 CPLD is programmed on the carrier board CPLD, it is not dependent on CM0(S3-2) and CM1 (S3-1).		

PGOOD

PGOOD pin is used as TDO JTAG signal to program CPLD of TE0715 module. PGOOD pin is used to select boot mode for SoC modules too. After booting user can use PGOOD as GPIO pin. PGOOD can be set or reset differentially for PCB REV04 and REV03 as shown:

PGOOD	Condition for PCB REV04 or later	Condition for PCB REV03	Related command in linux	Description
.0.	USR2 = OFF and USR0 = OFF	GPIO_output [23:16] = 0x01, if access to TE0715 is programmed on the carrier board CPLD and CM1(S3-1)= OFF or CM0(S3-2)= OFF GPIO_output [23:16] = 0x01, if no access to TE0715 CPLD is programmed on the carrier board CPLD, it is not dependent on CM0(S3-2) and CM1 (S3-1).	i2cset -y 0 0x30 0x02 0x01	If module has no i2c interface for MIO10 and MIO11 pins in vivado and linux design , this option for PCB REV03 does not work.
'1'	USR2 = ON and USR0 = OFF	GPIO_output [23:16] = 0x00, if access to TE0715 is programmed on the carrier board CPLD and CM1(S3-1)= OFF or CM0(S3-2)= OFF GPIO_output [23:16] = 0x00, if no access to TE0715 CPLD is programmed on the carrier board CPLD, it is not dependent on CM0(S3-2) and CM1 (S3-1).	i2cset -y 0 0x30 0x02 0x00	If module has no i2c interface for MIO10 and MIO11 pins in vivado and linux design , this option for PCB REV03 does not work.

On-board LEDs

LED glows depending on various signals in firmware or pins of CPLD. Additionally to test I2C to GPIO output registers S1 push button can be used to display GPIO_output[7:0] register on LEDs. If S1 is pushed, ULED1 to ULED7 display GPIO_output[7:0] register. PHY_LED1/PHY_LED1_A and PHY_LED2/PHY_LED2_A are RJ45 connector right LED and RJ45 connector left LED respectively. These LEDs are using to display states of PGOOD, NOSEQ and EN_FMC signals.

RJ45 Connector LED	Designator	LED Status	Condition	Description
PHY_LED1 (Green LED Anode, Yellow	J14C (Right LED)	OFF	PGOOD = '0', NOSEQ = '0'	
LED Cathode) , PHY_LED1_A		ON Yellow	PGOOD = '0', NOSEQ = '1'	
(Green LED Cathode, Yellow LED Anode)		ON Green	PGOOD = '1', NOSEQ = '0'	
		Blinky	PGOOD = '1', NOSEQ = '1'	
PHY_LED2 (Green LED Cathode, Yellow LED Anode),	J14B (Left LED)	ON Green	EN_FMC = '1'	Power Ok signal of EN5335QI PowerSoC is high. FMC_VADJ voltage is ok.
PHY_LED2_A (Green LED Anode, Yellow LED Cathode)		Blinky	EN_FMC = '0'	Power Ok signal of EN5335QI PowerSoC is low. FMC_VADJ voltage is faulty.

LED	Designator	Connected to Port / Signal	Condition	Connected to Port / Signal	Condition	Description
ULED1	D6	GPIO_output(0)	S1 = '0' (S1 push button is pushed)	mode0	S1 = '1' (S1 is not pushed)	mode0 = '1' , If CM1(S3-1)= OFF and CM0 (S3-2)= OFF FMC_VAD J = 1.8V
ULED2	D7	GPIO_output(1)	S1 = '0' (S1 push button is pushed)	mode1	S1 = '1' (S1 is not pushed)	mode1 = '1' , If CM1(S3-1)= ON and CM0 (S3-2)= OFF FMC_VAD J = 2.5V
ULED3	D8	GPIO_output(2)	S1 = '0' (S1 push button is pushed)	mode2	S1 = '1' (S1 is not pushed)	mode2 = '1', If CM1(S3-1)= OFF and CM0 (S3-2)= ON FMC_VADJ = 3.3V
ULED4	D9	GPIO_output(3)	S1 = '0' (S1 push button is pushed)	mode3	S1 = '1' (S1 is not pushed)	mode3 = '1' , If CM1(S3-1)= ON and CM0 (S3-2)= ON FMC_VAD J = 1.8V
ULED5	D4	GPIO_output(4)	S1 = '0' (S1 push button is pushed)	S2 button (Reset)	S1 = '1' (S1 is not pushed)	If LED is ON> S2 Reset push button is pushed.
ULED6	D15	GPIO_output(5)	S1 = '0' (S1 push button is pushed)	SD_DETECT	S1 = '1' (S1 is not pushed)	If LED is ON> MODE = '1' (QSPI boot mode) else MODE = '0' (SD card boot mode)
ULED7	D14	GPIO_output(6)	S1 = '0' (S1 push button is pushed)	Module UART0- RX	S1 = '1' (S1 is not pushed)	

ULED8 D5 GPIO_output(7) S1 = '0' (S1 push button is pushed) Module UART0- S1 = '1' (S1 is not pushed)

I2C to GPIO registers access methods

I2C to GPIO subsystem has 4 output and 4 input 8 bit registers. These registers can be written or read in linux or FSBL code as shown in the following tables:

GPIO input registers	Address	Read Command in Linux	Read Command in FSBL	Description
GPIO_input[7:0]	0x00	i2cget -y 0 0x30 0x00	iic_read8(0x30, 0x00,&data)	0x30 is device address. (I2C to GPIO address).
GPIO_input[15:8]	0x01	i2cget -y 0 0x30 0x01	iic_read8(0x30, 0x01,&data)	0x30 is device address. (I2C to GPIO address).
GPIO_input[23:16]	0x02	i2cget -y 0 0x30 0x02	iic_read8(0x30, 0x02,&data)	0x30 is device address. (I2C to GPIO address).
GPIO_input[31:24]	0x03	i2cget -y 0 0x30 0x03	iic_read8(0x30, 0x03,&data)	0x30 is device address. (I2C to GPIO address).

GPIO output registers	Address	Write Command in Linux	Write Command in FSBL	Description
GPIO_output[7:0]	0x00	i2cset -y 0 0x30 0x00 <data></data>	iic_write8(0x30, 0x00,data)	0x30 is device address. (I2C to GPIO address). 0x00 is register address.
GPIO_output[15:8]	0x01	i2cset -y 0 0x30 0x01 <data></data>	iic_write8(0x30, 0x01,data)	0x30 is device address. (I2C to GPIO address). 0x01 is register address.
GPIO_output[23:16]	0x02	i2cset -y 0 0x30 0x02 <data></data>	iic_write8(0x30, 0x02,data)	0x30 is device address. (I2C to GPIO address). 0x02 is register address.
GPIO_output[31:24]	0x03	i2cset -y 0 0x30 0x03 <data></data>	iic_write8(0x30, 0x03,data)	0x30 is device address. (I2C to GPIO address). 0x03 is register address.

I2C to GPIO registers

GPIO_input bit	Port/Signal	Description
0	VID0	EN5335QI Power SoC Voltage Select Line 0
1	VID1	EN5335QI Power SoC Voltage Select Line 1
2	VID2	EN5335QI Power SoC Voltage Select Line 2
3	USB_OC	USB Over Current

15	MIO15	UART0-TX
14	MIO14	UARTO-RX
13	MIO13	
12	MIO12	
11	MIO11	I2C-SDA
10	MIO10	I2C-SCL
9	CM1(S3-1)	DIP Switch S3-A
8	CM0(S3-2)	DIP Switch S3-B
GPIO input bit	Port/Signal	Description
7	USR3	DIP Switch S4-D
6	USR2	DIP Switch S4-C
5	USR1	DIP Switch S4-B
4	USR0	DIP Switch S4-A

GPIO input bit	Port/Signal	Description
16	NOSEQ	
17	PGOOD	
18	SD_WP	
19	SD_DETECT	
20	S1	User Button
21	POK_FMC	FMC VADJ Power Good
22	ACBUS4	
23	ACBUS5	

GPIO input bit	Port/Signal	Description
24	Y0	
25	Y1	
26	Y2	
27	Y3	
28	Y4	

29	Y5	
30	Y6	
31	X6	

GPIO output register	Port / Signal	Condition	Description
GPIO_output [7:0]	ULEDs	S1 (User push button) = ON (pushed)	To test GPIO_output it is helpful to check the sent data via i2c to GPIO on the ULEDs.
GPIO_output [15:8]	vir_usr1	GPIO_output[15:8] = 0x00 vir_usr1 = '0' GPIO_output[15:8] = 0x01 vir_usr1 = '1'	This register is used to control NOSEQ pin for PCB REV03. If no access to TE0715 CPLD or access to TE0715 CPLD jed file is programmed on the CPLD of carrier board and CM0(S3-2) and CM1(S3- 1) are OFF: vir_usr1 = '1' NOSEQ = '0'* vir_usr1 = '0' NOSEQ = '1'*
GPIO_output [23:16]	vir_usr2	GPIO_output[23:16] = 0x00 vir_usr2 = '0' GPIO_output[23:16] = 0x01 vir_usr2 = '1'	This register is used to control PGOOD pin for PCB REV03. If no access to TE0715 CPLD or access to TE0715 CPLD jed file is programmed on the CPLD of carrier board and CM0(S3-2) and CM1(S3-1) are OFF: vir_usr2 = '1' PGOOD= '0' vir_usr2 = '0' PGOOD = '1'
GPIO_output [31:24]			

*Note: This is only valid for PCB REV03. For PCB REV04 vir_usr1,vir_usr2 and vir_usr3 are not be used. For PCB REV04 PGOOD and NOSEQ can be controlled via USR2 and USR1 dip switches respectively.

Appx. A: Change History

Revision Changes

REV02 to REV03

- JTAG timing correction
- Renaming ports according to the schematic REV04
- RGPIO is removed.
- I2C to GPIO sub system is added for communication between FPGA on the module and CPLD on the carrier board. (MIO10 --> SCL , MIO11 --> SDA)
- Access to CPLD chip of TE0715 either via USR0 Dip switch for PCB REV04 or via CM0 and CM1 for PCB REV03 revisions
- In PCB REV04 USR0 is used to access to TE0715 CPLD
- In PCB REV04 USR1 is used to change NOSEQ signal, if no access to TE0715 CPLD is active (USR0 = OFF)
- In PCB REV04 USR2 is used to change PGOOD, if no access to TE0715 CPLD is active (USR0 = OFF)
- In PCB REV04 USR3 is used to change JTAGMODE signal of CPLD of module. USR3 = OFF --> Access to FPGA, USR3 = ON --> Access to CPLD of module
- In PCB REV03 CM0 and CM1 dip switches are used to access to CPLD of TE0715 or other modules.
- Displaying PGOOD and NOSEQ signal states on PHY_LED1/PHY_LED1_A
- Displaying state of POK_FMC (power ok signal of EN5335QI PowerSoC) on PHY_LED2/PHY_LED2_A

REV01 to REV02

- Power Management

 VADJ is switchable by S3 dip switches

 Reset Management

 only little changes

 RGPIO Interface to FPGA

 DCDC surgest

- RGPIO support
- LED
- new Order and accessible by RGPIO
 Module CPLD access is possible know

Document Change History

To get content of older revision got to "Change History" of this page and select older document revision number.

Date	Document Revision	CPLD Firmware Revision	Supported PCB Revision	Authors	Description
		REV03	REV03, REV04		REV03 release
					 Firmware release (SC-
Er	Er			Er	PGM-TE0705- PCB_REV0304
ro	ro			ro	CARRIER- CPLD_REV03-
r	r			r	20230329.zip) • I2C to GPIO added
re	re			re	RGPIO removed
n	n			n	ULEDs and PHY_LEDs
d	d			d	function changed
er	er			er	
in	in			in	
g	g			g	
m	m			m	
ac	ac			ac	
ro	ro			ro	
' p	'p			'p	
а	а			а	
g	g			g	
e-	e-			e-	
in	in			in	
fo'	fo'			fo'	
А	А			А	
m	m			m	
bi	bi			bi	
gu	gu			gu	
ou	ou			ou	
S	s			S	
m	m			m	

et et et ho ho ho d d d ov ov ov erl erl erl oa oa oa di di di ng ng ng fo fo fo r r r m m m et et et ho ho ho d d d jd jd jd k. k. k. pr pr pr ох ох ох y2 y2 y2 79 79 79 .\$.\$.\$ Pr Pr Pr ох ох ох y4 y4 y4 02 02 02 2# 2# 2# ha ha ha s s s С С С on on on te te te nt nt nt Le Le Le ve ve ve IP IP IP er er er mi mi mi SS SS SS io io io

n. n. n. С С С an an an no no no t t t re re re so so so lv lv lv е е е w w w hi hi hi ch ch ch m m m et et et ho ho ho d d d to to to in in in vo vo vo ke ke ke fo fo fo r r r [n [n [n ull ull ull , , , cl cl cl as as as s s s ja ja ja va va va la la la ng ng ng St St St rin rin rin g, g, g, cl cl cl as as as

s s s со со со m. m. m. atl atl atl as as as si si si an an an со со со nfl nfl nfl ue ue ue nc nc nc e. e. e. ра ра ра ge ge ge s. s. s. Ρ Ρ Ρ ag ag ag e] e] e] du du du е е е to to to ov ov ov erl erl erl ар ар ар pi pi pi ng ng ng pr pr pr ot ot ot ot ot ot ур ур ур es es es be be be tw tw tw ee ee ee n: n: n: [in [in [in te te te rf rf rf

ac ac ac е е е со со со m. m. m. atl atl atl as as as si si si an an an со со со nfl nfl nfl ue ue ue nc nc nc e. e. e. us us us er er er С С С on on on flu flu flu en en en се ce се U U U se se se r, r, r, cl cl cl as as as s s s ja ja ja va va va la la la ng ng ng St St St rin rin rin g, g, g, cl cl cl as as as

s s s со со со m. m. m. atl atl atl as as as si si si an an an со со со nfl nfl nfl ue ue ue nc nc nc e. e. e. со со со re re re С С С on on on te te te nt nt nt Е Е Е nti nti nti ty ty ty 0 0 0 bj bj bj ес ec ec t] t] t] [in [in [in te te te rf rf rf ac ac ac е е е со со со m. m. m. atl atl atl as as as si si si an an an

us us us er er er U U U se se se r, r, r, cl cl cl as as as s s s ja ja ja va va va la la la ng ng ng St St St rin rin rin g, g, g, cl cl cl as as as s s s со со со m. m. m. atl atl atl as as as si si si an an an со со со nfl nfl nfl ue ue ue nc nc nc e. e. e. со со со re re re С С С on on on te te te

11 17		1		1 1	1
nt	nt			nt	
E	E			E	
nti	nti			nti	
ty	ty			ty	
о	О			0	
bj	bj			bj	
ec	ec			ec	
t]	t]			t]	
ч ,	L. L.			L,	
2017-06-08	v.34	REV02	REV03,REV04	John Hartfiel	document style update
2016-11-17	v.27	REV02	REV03, REV04	John Hartfiel	Revision 02 finished
2016-11-04					Initial release
	v.1				
				Er	
				ro	
				r	
				re	
				n	
				d	
				er	
				in	
				g	
				m	
				ac	
				ro	
				'p	
				a	
				g	
				e-	
				in	
				fo'	
				А	
				m	
				bi	
				gu	
				ou	
				S	
		I		I	

m et ho d ov erl oa di ng fo r m et ho d jd k. pr ох y2 79 .\$ Pr ох y4 02 2# ha s С on te nt Le ve IP er mi SS

io n. С an no t re so lv е w hi ch m et ho d to in vo ke fo r [n ull , cl as s ja va la ng St rin g, cl

as s со m. atl as si an со nfl ue nc e. ра ge s. Ρ ag e] du е to ov erl ар pi ng pr ot ot ур es be tw ee n: [in te

rf ac е со m. atl as si an со nfl ue nc e. us er С on flu en се U se r, cl as s ja va la ng St rin g, cl

as s со m. atl as si an со nfl ue nc e. со re С on te nt Е nti ty 0 bj ес t] [in te rf ac е со m. atl as si an us er U se r, cl as s ja va la ng St rin g, cl as s со m. atl as si an со nfl ue nc e. со re С on

		te	
		nt	
		E	
		nti	
		ty	
		0	
		bj	
		ec	
		t]	
All			
		Er	
		ro	
		r	
		re	
		n	
		d	
		er	
		in	
		g	
		m	
		ac	
		ro	
		'p	
		а	
		g	
		e-	
		in	
		fo'	
		А	
		m	
		bi	
		gu	
		ou	
		s	
		m	
		et	
		. 1	

ho d ov erl oa di ng fo r m et ho d jd k. pr ох y2 79 .\$ Pr ох y4 02 2# ha s С on te nt Le ve IP er mi SS io n.

С an no t re so lv е w hi ch m et ho d to in vo ke fo r [n ull , cl as s ja va la ng St rin g, cl as s

со m. atl as si an со nfl ue nc e. ра ge s. Ρ ag e] du е to ov erl ар pi ng pr ot ot ур es be tw ee n: [in te rf ac

е со m. atl as si an со nfl ue nc e. us er С on flu en се U se r, cl as s ja va la ng St rin g, cl as s

со m. atl as si an со nfl ue nc e. со re С on te nt Е nti ty 0 bj ec t] [in te rf ac е со m. atl as si an us

er U se r, cl as s ja va la ng St rin g, cl as s со m. atl as si an со nfl ue nc e. со re С on te nt

Appx. B: Legal Notices

Data Privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

Document Warranty

The material contained in this document is provided "as is" and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy279.\$Proxy4022#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence. pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user. ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core. ContentEntityObject]