Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Important General Note:

  • Export PDF to download, if vivado revision is changed!

  • Designate all graphics and pictures with a number and a description, Use "Scroll Title" macro

    Use "Scroll Title" macro for pictures and table labels. Figure number must be set manually at the moment (automatically enumeration is planned by scrollPDF)

    Figure template (note: inner scroll ignore/only only with drawIO object):

    Page properties
    hiddentrue
    idComments

    Template Revision 3.0

    Design Name is always "TE Series Name" + Design name, for example "TE0720 Test Board"

    • Change List 2.9 to 3.0
      • add fix table of content
      • add table size as macro
      • removed page initial creator
    Page properties
    hiddentrue
    idComments
    Scroll Title
    anchorFigure_xyz
    titleText
    Scroll Ignore

    Create DrawIO object here: Attention if you copy from other page, use

    Scroll Only

    image link to the generate DrawIO PNG file of this page. This is a workaround until scroll pdf export bug is fixed

  • Table template:

    • Layout macro can be use for landscape of large tables
    • Set column width manually(can be used for small tables to fit over whole page) or leave empty (automatically)
  • Scroll Title
    anchorTable_xyz
    titleText

    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    ExampleComment12
  • ...
  • Overview

    Page properties
    hiddentrue
    idComments

    Notes :

    Refer to http://trenz.org/te0xyz-info for the current online version of this manual and other available documentation.

    Key Features


    DateVersionChangesAuthor
    2021-06-283.1.8
    • added boot process for Microblaze
    • minor typos, formatting
    ma
    2021-06-013.1.7
    • carrier reference note
    jh
    2021-05-043.1.6
    • removed zynq_ from zynq_fsbl
    ma
    2021-04-283.1.5
    • added macro "Scroll ignore" for suppression of horizontal dividing lines during .pdf-export
    • minor typos, formatting
    ma
    2021-04-273.1.4
    • Version History
      • changed from list to table
    • Design flow
      • removed step 5 from Design flow
      • changed link from TE Board Part Files to Vivado Board Part Flow
      • changed cmd shell from picture to codeblock
      • added hidden template for "Copy PetaLinux build image files", depending from hardware
      • added hidden template for "Power on PCB", depending from hardware
    • Usage update of boot process
    • Requirements - Hardware
      • added "*used as reference" for hardware requirements
    • all
      • placed a horizontal separation line under each chapter heading
      • changed title-alignment for tables from left to center
    • all tables
      • added "<project folder>\board_files" in Vivado design sources
    ma

    3.1.3
    • Design Flow
      • formatting
    • Launch
      • formatting
    ma

    3.1.2
    • minor typing corrections
    • replaced SDK by Vitis
    • changed from / to \ for windows paths
    • replaced <design name> by <project folder>
    • added "" for path names
    • added boot.src description
    • added USB for programming
    ma

    3.1.1
    • swapped order from prebuilt files
    • minor typing corrections
    • removed Win OS path length from Design flow, added as caution in Design flow
    ma

    3.1
    • Fix problem with pdf export and side scroll bar
    • update 19.2 to 20.2
    • add prebuilt content option


    3.0
    • add fix table of content
    • add table size as macro
    • removed page initial creator


    Custom_table_size_100

    Page properties
    hiddentrue
    idComments

    Notes Important General Note:

    • Add basic key futures, which can be tested with the design
    Excerpt
    • Vitis/Vivado 2019.2
    • PetaLinux
    • RF Analyzer 1.6
    • PCIe (endpoint)
    • SD
    • ETH
    • USB
    • I2C
    • RTC
    • FMeter
    • Modified FSBL for SI5395 programming
    • Special FSBL for QSPI programming

    Revision History

    DRHDesign Revision History
    • Export PDF to download, if vivado revision is changed!

    • Designate all graphics and pictures with a number and a description, Use "Scroll Title" macro

      • Use "Scroll Title" macro for pictures and table labels. Figure number must be set manually at the moment (automatically enumeration is planned by scrollPDF)
        • Figure template (note: inner scroll ignore/only only with drawIO object):

          Scroll Title
          anchorFigure_xyz
          titleText


          Scroll Ignore

          Create DrawIO object here: Attention if you copy from other page, use


          Scroll Only

          image link to the generate DrawIO PNG file of this page. This is a workaround until scroll pdf export bug is fixed



        • Table template:

          • Layout macro can be use for landscape of large tables
          • Set column width manually (can be used for small tables to fit over whole page) or leave empty (automatically)
    Page properties
    hiddentrue
    idComments

    Notes :

    • add every update file on the download
    • add design changes on description

        • Scroll Title
          anchorTable_
        • xyz
          title
        • Text

          Scroll Table Layout
          orientationportrait
          sortDirectionASC
          repeatTableHeadersdefault
          style
          widths
          sortByColumn1
          sortEnabledfalse
          cellHighlightingtrue

          Example
    Date
        • Comment
    Vivado
        • 1
    Project BuiltAuthorsDescription
    2020-10-272019.2

    TE0835-test_board_noprebuilt-vivado_2019.2-build_15_20201027100145.zip
    TE0835-test_board-vivado_2019.2-build_15_20201027100128.zip

    Mohsen Chamanbaz
    • initial release
    Release Notes and Know Issues
        • 2



    • ...



    Overview

    Scroll Ignore
    scroll-pdftrue
    scroll-officetrue
    scroll-chmtrue
    scroll-docbooktrue
    scroll-eclipsehelptrue
    scroll-epubtrue
    scroll-htmltrue


    Page properties
    hiddentrue
    idComments

    Notes :

  • add known Design issues and general notes for the current revision
  • do not delete known issue, add fixed version time stamp if  issue fixed
  • Scroll Title
    anchorTable_KI
    titleKnown Issues
    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    IssuesDescriptionWorkaroundTo be fixed versionUpdating the signal property failed, while the generation of the signal is already in progressIt is difficult to update the property of the generated signal while the generation of the signal by DACs is already running. The Generation button must be clicked several times to make the change in the output.
    • It is recommended to reprogram and initialize the boad again if such situation happens.
    ---

    Requirements

    Software

    Refer to http://trenz.org/te0835-info for the current online version of this manual and other available documentation.

    Key Features

    Page properties
    hiddentrue
    idComments

    Notes :

    • Add basic key futures, which can be tested with the design


    Excerpt
    • Vitis/Vivado 2020.2
    • PetaLinux
    • RF Analyzer 1.6
    • PCIe (endpoint)
    • SD
    • ETH
    • USB
    • I2C
    • RTC
    • FMeter
    • Modified FSBL for SI5395 programming
    • Special FSBL for QSPI programming

    Revision History

    Page properties
    hiddentrue
    idComments

    Notes :

    • add every update file on the download
    • add design changes on descriptionlist of software which was used to generate the design


    Scroll Title
    anchorTable_SWDRH
    title-alignmentcenter
    titleSoftwareDesign Revision History

    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    Vitis
    SoftwareDateVersionVivadoNoteProject BuiltAuthors2019.2needed, Vivado is included into Vitis installation
    PetaLinux2019.2needed
    RF Analyzer1.6needed
    SI ClockBuilder Pro---optional
    Hardware
    Description
    2021-07-142020.2TE0835-test_board_noprebuilt-vivado_2020.2-build_5_20210714094011.zip
    TE0835-test_board-vivado_2020.2-build_5_20210714093950.zip
    Mohsen Chamanbaz
    • 2020.2 release
    2020-10-272019.2

    TE0835-test_board_noprebuilt-vivado_2019.2-build_15_20201027100145.zip
    TE0835-test_board-vivado_2019.2-build_15_20201027100128.zip

    Mohsen Chamanbaz
    • initial release


    Release Notes and Know Issues

    Page properties
    hiddentrue
    idComments
    Notes :
      • list of software which was used to generate the design

    Basic description of TE Board Part Files is available on TE Board Part Files.

    Complete List is available on <design name>/board_files/*_board_files.csv

    Design supports following modules:

    • add known Design issues and general notes for the current revision
    • do not delete known issue, add fixed version time stamp if  issue fixed


    Scroll Title
    anchorTable_HWMKI
    title-alignmentcenter
    titleHardware ModulesKnown Issues

    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    Module ModelBoard Part Short NamePCB Revision SupportDDRQSPI FlashEMMCOthersNotes
    TE0835-02-MXE21-A25dr_1e_4gbREV24GB128MBNANANA

    Design supports following carriers:

    IssuesDescriptionWorkaroundTo be fixed version
    Updating the signal property failed, while the generation of the signal is already in progressIt is difficult to update the property of the generated signal while the generation of the signal by DACs is already running. The Generation button must be clicked several times to make the change in the output.
    • It is recommended to reprogram and initialize the boad again if such situation happens.
    ---


    Requirements

    Software

    Page properties
    hiddentrue
    idComments

    Notes :

    • list of software which was used to generate the design


    Scroll Title
    anchorTable_HWCSW
    title-alignmentcenter
    titleHardware CarrierSoftware

    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    Carrier ModelSoftwareNotesVersionTEB0835-02

    Additional HW Requirements:

    Note
    Vitis2020.2needed, Vivado is included into Vitis installation
    PetaLinux2020.2needed
    RF Analyzer1.6needed
    SI ClockBuilder Pro---optional


    Hardware

    Page properties
    hiddentrue
    idComments

    Notes :

    • list of hardware which was used to generate the design
    • mark the module and carrier board, which was used tested with an *

    Basic description of TE Board Part Files is available on TE Board Part Files.

    Complete List is available on <design name>/board_files/*_board_files.csv

    Design supports following modules:

    Scroll Title
    anchorTable_HWM
    title-alignmentcenter
    titleHardware Modules

    scroll-

    Scroll Title
    anchorTable_AHW
    titleAdditional Hardware

    scroll-tablelayout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    Additional HardwareNotes
    Micro USB Cable for JTAG/UART
    Cooler

    It is strongly recommended that the RFSoC should not be used without heat sink.

    SMA male connector cableSome ADC inputs/DAC outouts have the SMA connector
    UFL female connector cableSome ADC inputs/DAC outouts have the UFL connector
    Ethernet cable
    SD card16GB
    Signal generator (optional)To feed a desired signal to the input of ADC
    Oscilloscope (optional)To monitor the output signal of DACs.
    PCWith ATX Power supply and PCIe X8 slot

    Content

    Page properties
    hiddentrue
    idComments

    Notes :

    • content of the zip file

    For general structure and of the reference design, see Project Delivery - Xilinx devices

    Design Sources
    Module ModelBoard Part Short NamePCB Revision SupportDDRQSPI FlashEMMCOthersNotes
    TE0835-02-MXE21-A*25dr_1e_4gbREV24GB128MBNANANA

    *used as reference

    Design supports following carriers:

    Scroll Title
    anchorTable_HWC
    title-alignmentcenter
    titleHardware Carrier

    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    style
    widths
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    Carrier ModelNotes
    TEB0835-02*

    *used as reference

    Additional HW Requirements:

    Scroll Title
    anchorTable_DSAHW
    title-alignmentcenter
    titleDesign sourcesAdditional Hardware

    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    TypeAdditional HardwareLocationNotes
    Vivado<design name>/block_design
    <design name>/constraints
    <design name>/ip_lib
    Vivado Project will be generated by TE Scripts
    Vitis<design name>/sw_libAdditional Software Template for Vitis and apps_list.csv with settings automatically for Vitis app generation
    PetaLinux<design name>/os/petalinuxPetaLinux template with current configuration

    Additional Sources

    Scroll Title
    anchorTable_ADS
    titleAdditional design sources

    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    TypeLocationNotesSI5395 (PLL of the RFSoc Module)<design name>/misc/Si5395SI5395 Project with current PLL ConfigurationSI5395 (PLL of the carrier board)<design name>/misc/Si5395SI5395 Project with current PLL Configuration
    Micro USB Cable for JTAG/UART
    Cooler

    It is strongly recommended that the RFSoC should not be used without heat sink.

    SMA male connector cableSome ADC inputs/DAC outouts have the SMA connector
    UFL female connector cableSome ADC inputs/DAC outouts have the UFL connector
    Ethernet cable
    SD card16GB
    Signal generator (optional)To feed a desired signal to the input of ADC
    Oscilloscope (optional)To monitor the output signal of DACs.
    PCWith ATX Power supply and PCIe X8 slot

    *used as reference

    Content

    Page properties
    hiddentrue
    idComments

    Notes :

    • content of the zip file

    For general structure and of the reference design, see Project Delivery - Xilinx devices

    Design Sources

    Prebuilt

    Notes :

  • prebuilt files
  • Template Table:PFPrebuilt files
    Page properties
    hiddentrue
    idComments
    Scroll Title
    anchorTable_
    DS
    title-alignmentcenter
    title
    Design sources

    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    Type
    File
    Location
    File-Extension
    Notes
    Vivado<design name>/block_design
    <design name>/constraints
    <design name>/ip_lib
    Vivado Project will be generated by TE Scripts
    Vitis<design name>/sw_libAdditional Software Template for Vitis and apps_list.csv with settings automatically for Vitis app generation
    PetaLinux<design name>/os/petalinuxPetaLinux template with current configuration


    Additional Sources

    Scroll Title
    anchorTable_ADS
    title-alignmentcenter
    titleAdditional design sources

    Scroll Table Layout
    orientationportrait
    sortDirectionASC
    repeatTableHeadersdefault
    style
    widths
    sortByColumn1
    sortEnabledfalse
    cellHighlightingtrue

    TypeLocationNotes
    SI5395 (PLL of the RFSoc Module)<design name>/misc/Si5395SI5395 Project with current PLL Configuration
    SI5395 (PLL of the carrier board)<design name>/misc/Si5395SI5395 Project with current PLL Configuration
    init.sh<project folder>\misc\sd\Additional Initialization Script for Linux


    Prebuilt

    Defines the necessary clock frequencies for the PLLs on the RFSoC module and carrier board

  • Page properties
    hiddentrue
    idComments

    Notes :

    • prebuilt files
    • Template Table:

      Description

      BIF-File*.bifFile with description to generate Bin-File
      BIN-File*.binFlash Configuration File with Boot-Image (Zynqmp RFSoC-FPGAs)
      BIT-File*.bitFPGA (PL Part) Configuration File
      DebugProbes-File*.ltxDefinition File for Vivado/Vivado Labtools Debugging Interface

      Debian SD-Image

      *.img

      Debian Image for SD-Card

      Diverse Reports---Report files in different formats
      Hardware-Platform-Specification-Files*.xsaExported Vivado Hardware Specification for Vitis and PetaLinux
      LabTools Project-File*.lprVivado Labtools Project File

      MCS-File

      *.mcs

      Flash Configuration File with Boot-Image (MicroBlaze or FPGA part only)

      MMI-File

      *.mmi

      File with BRAM-Location to generate MCS or BIT-File with *.elf content (MicroBlaze only)

      OS-Image*.ubImage with Linux Kernel (On Petalinux optional with Devicetree and RAM-Disk)
      Software-Application-File*.elfSoftware Application for Zynqmp RFSoC or MicroBlaze Processor Systems

      SREC-File

      *.srec

      Converted Software Application for MicroBlaze Processor Systems

      Clock Builder Pro project file*.slabtimeproj
      Scroll Title
      anchorTable_PF
      title-alignmentcenter
      titlePrebuilt files
      (only on ZIP with prebult content)
        • Scroll Table Layout
          orientationportrait
          sortDirectionASC
          repeatTableHeadersdefault
          style
          widths
          sortByColumn1
          sortEnabledfalse
          cellHighlightingtrue

          File

          File-Extension

          Description

          BIF-File*.bifFile with description to generate Bin-File
          BIN-File*.binFlash Configuration File with Boot-Image (
      Zynqmp RFSoC
        • Zynq-FPGAs)
          BIT-File*.bitFPGA (PL Part) Configuration File
          Boot Source*.scr

          Distro Boot file

          DebugProbes-File*.ltxDefinition File for Vivado/Vivado Labtools Debugging Interface

          Debian SD-Image

          *.img

          Debian Image for SD-Card

          Diverse Reports---Report files in different formats
          Hardware-Platform-
      Specification
        • Description-
      Files
        • File*.xsaExported Vivado
      Hardware Specification
        • hardware description file for Vitis and PetaLinux
          LabTools Project-File*.lprVivado Labtools Project File

          MCS-File

          *.mcs

          Flash Configuration File with Boot-Image (MicroBlaze or FPGA part only)

          MMI-File

          *.mmi

          File with BRAM-Location to generate MCS or BIT-File with *.elf content (MicroBlaze only)

          OS-Image*.ubImage with Linux Kernel (On Petalinux optional with Devicetree and RAM-Disk)
          Software-Application-File*.elfSoftware Application for
      Zynqmp RFSoC
        • Zynq or MicroBlaze Processor Systems
      Clock Builder Pro project file
        • SREC-File

          *.

      slabtimeprojDefines the necessary clock frequencies for the PLLs on the RFSoC module and carrier board

      Download

      Reference Design is only usable with the specified Vivado/Vitis/PetaLinux version. Do never use different Versions of Xilinx Software for the same Project.

      Page properties
      hiddentrue
      idComments

      Reference Design is available on:

      Software Setup

      Download RF Analyzer GUI from the following link and install it.

      Design Flow

      Page properties
      hiddentrue
      idComments
      Notes :
      • Basic Design Steps

      • Add/ Remove project specific description

      Note

      Reference Design is available with and without prebuilt files. It's recommended to use TE prebuilt files for first lunch.

      Trenz Electronic provides a tcl based built environment based on Xilinx Design Flow.

      See also:

      The Trenz Electronic FPGA Reference Designs are TCL-script based project. Command files for execution will be generated with "_create_win_setup.cmd" on Windows OS and "_create_linux_setup.sh" on Linux OS.

      TE Scripts are only needed to generate the vivado project, all other additional steps are optional and can also executed by Xilinx Vivado/SDK GUI.  For currently Scripts limitations on Win and Linux OS see: Project Delivery - Xilinx devices

      1. _create_win_setup.cmd/_create_linux_setup.sh and follow instructions on shell:
        Image Removed
      2. Press 0 and enter to start "Module Selection Guide"
      3. (optional Win OS) Generate Virtual Drive or use short directory  for the reference design (for example x:\<design name>)
      4. Create Project (follow instruction of the product selection guide), settings file will be configured automatically during this process)
        1. (optional for manual changes) Select correct device and Xilinx install path on "design_basic_settings.cmd" and create Vivado project with "vivado_create_project_guimode.cmd"
          Note: Select correct one, see also TE Board Part Files
      5. Create XSA and export to prebuilt folder
        1. Run on Vivado TCL: TE::hw_build_design -export_prebuilt
          Note: Script generate design and export files into \prebuilt\hardware\<short dir>. Use GUI is the same, except file export to prebuilt folder
      6. Create Linux (bl31.elf, uboot.elf and image.ub) with exported XSA
        1. XSA is exported to "prebuilt\hardware\<short name>"
          Note: HW Export from Vivado GUI create another path as default workspace.
        2. Create Linux images on VM, see PetaLinux KICKstart
          1. Use TE Template from /os/petalinux
      7. Add Linux files (bl31.elf, uboot.elf and image.ub) to prebuilt folder
        1. "prebuilt\os\petalinux\<ddr size>" or "prebuilt\os\petalinux\<short name>"
      8. Generate Programming Files with Vitis
        1. Run on Vivado TCL: TE::sw_run_vitis -all
          Note: Scripts generate applications and bootable files, which are defined in "sw_lib\apps_list.csv"
        2. (alternative) Start SDK with Vivado GUI or start with TE Scripts on Vivado TCL: TE::sw_run_vitis
          Note:  TCL scripts generate also platform project, this must be done manuelly in case GUI is used. See Vitis

      Launch

      Page properties
      hiddentrue
      idComments

      Note:

      • Programming and Startup procedure

      Programming

      Note

      Check Module and Carrier TRMs for proper HW configuration before you try any design.

      Xilinx documentation for programming and debugging: Xilinx Development Tools

      Get prebuilt boot binaries

        • srec

          Converted Software Application for MicroBlaze Processor Systems





      Scroll Title
      anchorTable_PF
      title-alignmentcenter
      titlePrebuilt files (only on ZIP with prebult content)

      Scroll Table Layout
      orientationportrait
      sortDirectionASC
      repeatTableHeadersdefault
      sortByColumn1
      sortEnabledfalse
      cellHighlightingtrue

      File

      File-Extension

      Description

      BIF-File*.bifFile with description to generate Bin-File
      BIN-File*.binFlash Configuration File with Boot-Image (Zynqmp RFSoC-FPGAs)
      BIT-File*.bitFPGA (PL Part) Configuration File
      DebugProbes-File*.ltxDefinition File for Vivado/Vivado Labtools Debugging Interface
      Diverse Reports---Report files in different formats
      Hardware-Platform-Specification-Files*.xsaExported Vivado Hardware Specification for Vitis and PetaLinux
      LabTools Project-File*.lprVivado Labtools Project File
      OS-Image*.ubImage with Linux Kernel (On Petalinux optional with Devicetree and RAM-Disk)
      Software-Application-File*.elfSoftware Application for Zynqmp RFSoC or MicroBlaze Processor Systems
      Clock Builder Pro project file*.slabtimeprojDefines the necessary clock frequencies for the PLLs on the RFSoC module and carrier board


      Download

      Reference Design is only usable with the specified Vivado/Vitis/PetaLinux version. Do never use different Versions of Xilinx Software for the same Project.

      Page properties
      hiddentrue
      idComments

      Reference Design is available on:

      Software Setup

      Download RF Analyzer GUI from the following link and install it.

      Design Flow

      Scroll Ignore
      scroll-pdftrue
      scroll-officetrue
      scroll-chmtrue
      scroll-docbooktrue
      scroll-eclipsehelptrue
      scroll-epubtrue
      scroll-htmltrue


      Page properties
      hiddentrue
      idComments
      Notes :
      • Basic Design Steps

      • Add/ Remove project specific description


      Note

      Reference Design is available with and without prebuilt files. It's recommended to use TE prebuilt files for first lunch.

      Trenz Electronic provides a tcl based built environment based on Xilinx Design Flow.

      See also:

      The Trenz Electronic FPGA Reference Designs are TCL-script based project. Command files for execution will be generated with "_create_win_setup.cmd" on Windows OS and "_create_linux_setup.sh" on Linux OS.

      TE Scripts are only needed to generate the vivado project, all other additional steps are optional and can also executed by Xilinx Vivado/SDK GUI.  For currently Scripts limitations on Win and Linux OS see: Project Delivery - Xilinx devices

      Note

      Caution! Win OS has a 260 character limit for path lengths which can affect the Vivado tools. To avoid this issue, use Virtual Drive or the shortest possible names and directory locations for the reference design (for example "x:\<project folder>")

      1. Run _create_win_setup.cmd/_create_linux_setup.sh and follow instructions on shell

      2. Press 0 and enter to start "Module Selection Guide"
        1. Select assembly version
        2. Validate selection
        3. Select Create and open delivery binary folder
          Note: Folder (<project foler>/_binaries_<Artikel Name>) with subfolder (boot_<app name>) for different applications will be generated

      QSPI

      Optional for Boot.bin on QSPI Flash and image.ub on SD.

      1. Connect JTAG and power on carrier with module
      2. Open Vivado Project with "vivado_open_existing_project_guimode.cmd" or if not created, create with "vivado_create_project_guimode.cmd"
      3. Type on Vivado TCL Console: TE::pr_program_flash -swapp u-boot
        Note: To program with SDK/Vivado GUI, use special FSBL (zynqmp_fsbl_flash) on setup
                  optional "TE::pr_program_flash -swapp hello_te0835" possible
      4. Copy image.ub on SD-Card
        • use files from (<project foler>/_binaries_<Articel Name>)/boot_linux from generated binary folder,see: Get prebuilt boot binaries
        • or use prebuilt file location, see <design_name>/prebuilt/readme_file_location.txt
      5. Insert SD-Card

      SD

      1. Copy image.ub and Boot.bin on SD-Card
        • use files from (<project foler>/_binaries_<Articel Name>)/boot_linux from generated binary folder,see: Get prebuilt boot binaries
        • or use prebuilt file location, see <design_name>/prebuilt/readme_file_location.txt
      2. Set Boot Mode to SD-Boot.
        • Depends on Carrier, see carrier TRM.
      3. Insert SD-Card in SD-Slot.

      JTAG

      Not used on this Example.

      Hardware Setup

      The Hardware contains of a TE0835 module and TEB0835 carrier board and has 8 ADC inputs and 8 DAC outputs.

      1. Plug the TE0835 module on the TEB0835 carrier board
      2. Install the cooler on the RFSoC chip
        1. Attention: It is strongly recommended that the RFSoC should not be used without heat sink.
      3. Connect the micro USB cable to the J29 connector
      4. Plug the board on the PCIe port of the PC
      5. Plug the prepared SD card on the SD card socket (J28)
      6. Connect a cable with SMA or UFL connector to one of the DAC connector( for example DAC0 J9) and feed it back to the related ADC input (for example ADC0 J1)
      7. (optional) A signal generator can be used to feed desired sinal to ADC input.
      8. (optional) An oscilloscope can be used to monitor the output signal of DAC.

      Usage

      1. :

        Code Block
        languagebash
        themeMidnight
        title_create_win_setup.cmd/_create_linux_setup.sh
        ------------------------Set design paths----------------------------
        -- Run Design with: _create_win_setup
        -- Use Design Path: <absolute project path>
        --------------------------------------------------------------------
        -------------------------TE Reference Design---------------------------
        --------------------------------------------------------------------
        -- (0)  Module selection guide, project creation...prebuilt export...
        -- (1)  Create minimum setup of CMD-Files and exit Batch
        -- (2)  Create maximum setup of CMD-Files and exit Batch
        -- (3)  (internal only) Dev
        -- (4)  (internal only) Prod
        -- (c)  Go to CMD-File Generation (Manual setup)
        -- (d)  Go to Documentation (Web Documentation)
        -- (g)  Install Board Files from Xilinx Board Store (beta)
        -- (a)  Start design with unsupported Vivado Version (beta)
        -- (x)  Exit Batch (nothing is done!)
        ----
        Select (ex.:'0' for module selection guide):


      2. Press 0 and enter to start "Module Selection Guide"
      3. Createproject and follow instructions of the product selection guide, settings file will be configured automatically during this process.
        • optional for manual changes: Select correct device and Xilinx install path on "design_basic_settings.cmd" and create Vivado project with "vivado_create_project_guimode.cmd"


          Note

          Note: Select correct one, see also Vivado Board Part Flow


      4. Create hardware description file (.xsa file) for PetaLinux project and export to prebuilt folder

        Code Block
        languagepy
        themeMidnight
        titlerun on Vivado TCL (Script generates design and export files into "<project folder>\prebuilt\hardware\<short name>")
        TE::hw_build_design -export_prebuilt


        Info

        Using Vivado GUI is the same, except file export to prebuilt folder.


      5. Create and configure your PetaLinux project with exported .xsa-file, see PetaLinux KICKstart
        • use TE Template from "<project folder>\os\petalinux"
        • use exported .xsa file from "<project folder>\prebuilt\hardware\<short name>" . Note: HW Export from Vivado GUI creates another path as default workspace.

        • The build images are located in the "<plnx-proj-root>/images/linux" directory

      6. Configure the boot.scr file as needed, see Distro Boot with Boot.scr
      7. Copy PetaLinux build image files to prebuilt folder
        • copy u-boot.elf, image.ub and boot.scr from "<plnx-proj-root>/images/linux" to prebuilt folder

          Info

          "<project folder>\prebuilt\os\petalinux\<ddr size>" or "<project folder>\prebuilt\os\petalinux\<short name>"


          Page properties
          hiddentrue
          idComments

          This step depends on Xilinx Device/Hardware

          for Zynq-7000 series

          • copy u-boot.elf, image.ub and boot.scr from "<plnx-proj-root>/images/linux" to prebuilt folder

          for ZynqMP

          • copy u-boot.elf, bl31.elf, image.ub and boot.scr from "<plnx-proj-root>/images/linux" to prebuilt folder

          for ...

          • ...


      8. Generate Programming Files with Vitis

        Code Block
        languagepy
        themeMidnight
        titlerun on Vivado TCL (Script generates applications and bootable files, which are defined in "test_board\sw_lib\apps_list.csv")
        TE::sw_run_vitis -all
        TE::sw_run_vitis (optional; Start Vitis from Vivado GUI or start with TE Scripts on Vivado TCL)


        Note

        TCL scripts generate also platform project, this must be done manually in case GUI is used. See Vitis


      Launch

      Scroll Ignore
      scroll-pdftrue
      scroll-officetrue
      scroll-chmtrue
      scroll-docbooktrue
      scroll-eclipsehelptrue
      scroll-epubtrue
      scroll-htmltrue


      Page properties
      hiddentrue
      idComments

      Note:

      • Programming and Startup procedure

      Programming

      Note

      Check Module and Carrier TRMs for proper HW configuration before you try any design.

      Reference Design is also available with prebuilt files. It's recommended to use TE prebuilt files for first launch.

      Xilinx documentation for programming and debugging: Xilinx Development Tools

      Get prebuilt boot binaries

      1. _create_win_setup.cmd/_create_linux_setup.sh and follow instructions on shell
      2. Press 0 and enter to start "Module Selection Guide"
        1. Select assembly version
        2. Validate selection
        3. Select Create and open delivery binary folder

          Info

          Note: Folder "<project folder>\_binaries_<Article Name>" with subfolder "boot_<app name>" for different applications will be generated


      QSPI-Boot mode

            Option for Boot.bin on QSPI Flash and image.ub and boot.scr on SD or USB.

      1. Connect JTAG and power on carrier with module
      2. Open Vivado Project with "vivado_open_existing_project_guimode.cmd" or if not created, create with "vivado_create_project_guimode.cmd"

        Code Block
        languagepy
        themeMidnight
        titlerun on Vivado TCL (Script programs BOOT.bin on QSPI flash)
        TE::pr_program_flash -swapp u-boot
        TE::pr_program_flash -swapp hello_te0820 (optional)


        Note

        To program with Vitis/Vivado GUI, use special FSBL (fsbl_flash) on setup


      3. Copy image.ub and boot.scr on SD or USB
        • use files from "<project folder>\_binaries_<Article Name>\boot_linux" from generated binary folder,see: Get prebuilt boot binaries
        • or use prebuilt file location, see "<project folder>\prebuilt\file_location.txt"
      4. Set Boot Mode to QSPI-Boot and insert SD or USB.
        • Depends on Carrier, see carrier TRM.

      SD-Boot mode

      1. Copy image.ub and Boot.bin on SD-Card
        • use files from (<project foler>/_binaries_<Articel Name>)/boot_linux from generated binary folder,see: Get prebuilt boot binaries
        • or use prebuilt file location, see <design_name>/prebuilt/readme_file_location.txt
      2. Set Boot Mode to SD-Boot.
        • Depends on Carrier, see carrier TRM.
      3. Insert SD-Card in SD-Slot.

      JTAG

      Not used on this Example.

      Hardware Setup

      The Hardware contains of a TE0835 module and TEB0835 carrier board and has 8 ADC inputs and 8 DAC outputs.

      1. Plug the TE0835 module on the TEB0835 carrier board
      2. Install the cooler on the RFSoC chip
        1. Attention: It is strongly recommended that the RFSoC should not be used without heat sink.
      3. Connect the micro USB cable to the J29 connector
      4. Plug the board on the PCIe port of the PC
      5. Plug the prepared SD card on the SD card socket (J28)
      6. Connect a cable with SMA or UFL connector to one of the DAC connector( for example DAC0 J9) and feed it back to the related ADC input (for example ADC0 J1)
      7. (optional) A signal generator can be used to feed desired sinal to ADC input.
      8. (optional) An oscilloscope can be used to monitor the output signal of DAC.

      Usage

      1. Prepare HW like described on section Hardware Setup
      2. Connect UART USB (most cases same as JTAG)
      3. Select SD Card as Boot Mode (or QSPI - depending on step 1)

        Info

        Note: See TRM of the Carrier, which is used.


        Tip

        Starting with Petalinux version 2020.1, the industry standard "Distro-Boot" boot flow for U-Boot was introduced, which significantly expands the possibilities of the boot process and has the primary goal of making booting much more standardised and predictable.
        The boot options described above describe the common boot processes for this hardware; other boot options are possible.
        For more information see Distro Boot with Boot.scr


      4. Power On PCB

        Expand
        titleboot process

        1. Zynqmp RFSoC Boot ROM loads FSBL from SD into OCM

        2. FSBL loads U-boot from SD into DDR,

        3. U-boot loads Linux (image.ub) from SD/QSPI/... into DDR


        Page properties
        hiddentrue
        idComments

        This step depends on Xilinx Device/Hardware

        for Zynq-7000 series

        1. Zynq Boot ROM loads FSBL from SD/QSPI into OCM,

        2. FSBL init the PS, programs the PL using the bitstream and loads U-boot from SD/QSPI into DDR,

        3. U-boot loads Linux (image.ub) from SD/QSPI/... into DDR


        for ZynqMP???

        1. ZynqMP Boot ROM loads FSBL from SD/QSPI into OCM,

        2. FSBL init the PS, programs the PL using the bitstream and loads PMU, ATF and U-boot from SD/QSPI into DDR,

        3. U-boot loads Linux (image.ub) from SD/QSPI/... into DDR


        for Microblaze

        1. FPGA Loads Bitfile from Flash,

        2. MCS Firmware configure SI5338 and starts Microblaze,

        3. SREC Bootloader from Bitfile Firmware loads U-Boot into DDR (This takes a while),

        4. U-boot loads Linux from QSPI Flash into DDR


        for native FPGA

        ...

      5. Prepare HW like described on section 111444625
      6. Connect UART USB (most cases same as JTAG)
      7. Select SD Card as Boot Mode (or QSPI - depending on step 1)
        Note: See TRM of the Carrier, which is used.
      8. Power On PCB
        Note: 1. Zynqmp RFSoC Boot ROM loads FSBL from SD into OCM, 2. FSBL loads U-boot from SD into DDR, 3. U-boot load Linux from SD into DDR


      Linux

      1. Open Serial Console (e.g. putty)
        • Speed: 115200
        • select COM Port

        :

        • Info

          Win OS, see device manager, Linux OS

        see 
        • see dmesg |grep

        tty 
        • tty (UART is *USB1)


      2. Linux Console:

        Note: Wait until Linux boot finished For Linux Login use:
        Code Block
        languagebash
        themeMidnight
        petalinux login: root
        Password: 
      3. User Name: root
      4. Password:
        root


      5. You can use Linux shell now.

      6. I2C Bus type: i2cdetect -y -r 0
        1. Bus 0 up to 5 possible
      7. RTC check: dmesg | grep rtc
      8. ETH0 works with udhcpc
      9. USB type  "lsusb" or connect USB2.0 device
      10. PCIe Bus type: "lspci"PCIe device should be seen in the console 



        Code Block
        languagebash
        themeMidnight
        i2cdetect -y -r 0	(check I2C Bus; BUS 0 up to 5 possible)
        dmesg | grep rtc	(RTC check)
        udhcpc				(ETH0 check)
        lsusb				(USB check)


      11. Option Features
        • Webserver to get access to Zynqmp RFSoC
          • insert IP on web browser to start web interface
        • init.sh scripts
          • add init.sh script on SD, content will be load automatically on startup (template included in
        ./misc/SD
          • "<project folder>\misc\SD")

      Vivado HW Manager

      Page properties
      hiddentrue
      idComments

      Note:

      • Add picture of HW Manager

      • add notes for the signal either groups or topics, for example:

        Control:

        • add controllable IOs with short notes..

        Monitoring:

        • add short notes for signals which will be monitored only
        • SI5338 CLKs:
          • Set radix from VIO signals to unsigned integer. Note: Frequency Counter is inaccurate and displayed unit is Hz
          • expected CLK Frequ:...

      Open Vivado HW-Manager and add VIO signal to dashboard (*.ltx located on prebuilt folder)

      • Monitoring:
        • The output frequency  of MMCM blocks can be monitored.
          • Set radix from VIO signals to unsigned integer.
          • The tempreature of ARM processor and FPGA can be measured too.
      Scroll Title
      anchorFigure_VHM
      title-alignmentcenter
      titleVivado Hardware Manager


      RF Analyzer

      1. Open the RF Analyzer GUI
      2. Click on Connect button
      3. Adjust the desired JTAG frequency (for example 30MHZ)
      4. Give the generated bitstream file path
      5. Click on Download Bitstream button to load the Bitstream file on the FPGA
      6. When downloading is finished, click on Select Target button
      7. After initilalisation, all ADCs/DACs tiles are visible
      8. Click on desired DAC tile and choose a DAC (for example DAC0)
      9. Adjust desired DAC properties (for example output frequency)
      10. Click on Generate button to generate the signal in output of DAC
      11. Click on the related ADC tile and choose the related ADC (for example ADC0)
      12. Click on Acquire button to aqcuire the input signal
      13. The spectum of the DAC output signal can be seen now. The signal can be visible in time domain too.
        1. Tip: In menu Window click on Multiview to see all of DACs and ADCs simultaneously.


      RF Analyzer GUIBoard TE0835 ( RFSoC U1)
      TEB0835
      Tile /ConverterSoC Pin NameSoC Pin NumberB2BSignal NameConnector DesignatorConnector Type
      ADC Tile 0-ADC 01ADC0_P/ADC0_NAK2/AK131/29ADC0_P/ADC0_NJ1SMA
      ADC Tile 0-ADC 23ADC1_P/ADC1_NAH2/AH143/41ADC1_P/ADC1_NJ2UFL
      ADC Tile 1-ADC 01ADC2_P/ADC2_NAF2/AF149/47ADC2_P/ADC2_NJ3SMA
      ADC Tile 1-ADC 23ADC3_P/ADC3_NAD2/AD159/61ADC3_P/ADC3_NJ4UFL
      ADC Tile 2-ADC 01ADC4_P/ADC4_NAB2/AB167/65ADC4_P/ADC4_NJ5SMA
      ADC Tile 2-ADC 23ADC5_P/ADC5_NY2/Y179/77ADC5_P/ADC5_NJ6UFL
      ADC Tile 3-ADC 01ADC6_P/ADC6_NV2/V185/83ADC6_P/ADC6_NJ7SMA
      ADC Tile 3-ADC 23ADC7_P/ADC7_NT2/T197/95ADC7_P/ADC7_NJ8UFL
      DAC Tile 0-DAC 0DAC0_P/DAC0_NN2/N1103/101DAC0_P/DAC0_NJ9SMA
      DAC Tile 0-DAC 1DAC1_P/DAC1_NL2/L1109/107DAC1_P/DAC1_NJ10UFL
      DAC Tile 0-DAC 2DAC2_P/DAC2_NJ2/J1121/119DAC2_P/DAC2_NJ11SMA
      DAC Tile 0-DAC 3DAC3_P/DAC3_NG2/G1127/125DAC3_P/DAC3_NJ12UFL
      DAC Tile 1-DAC 0DAC4_P/DAC4_NE2/E1133/131DAC4_P/DAC4_NJ13UFL
      DAC Tile 1-DAC 1DAC5_P/DAC5_NC2/C1139/137DAC5_P/DAC5_NJ14UFL
      DAC Tile 1-DAC 2DAC6_P/DAC6_NB4/A4151/149DAC6_P/DAC6_NJ15UFL
      DAC Tile 1-DAC 3DAC7_P/DAC7_NB6/A6157/155DAC7_P/DAC7_NJ16UFL

      As an example the GUi should be seen after initialization as below:

      Expand
      titleOverview

      For example, when all DACs are in operation, the GUI can be seen as below:

      Expand
      titleDACs

      For example, when all ADCs are in operation, the GUI can be seen as below:

      Expand
      titleADCs

      System Design - Vivado

      Scroll Ignore
      scroll-pdftrue
      scroll-officetrue
      scroll-chmtrue
      scroll-docbooktrue
      scroll-eclipsehelptrue
      scroll-epubtrue
      scroll-htmltrue


      Page properties
      hiddentrue
      idComments

      Note:

      • Description of Block Design, Constrains... BD Pictures from Export...

      Block Design

      Scroll Title
      anchorFigure_BD
      title-alignmentcenter
      titleBlock Design
      Image RemovedImage Added

      PS Interfaces

      Page properties
      hiddentrue
      idComments

      Note:

      • optional for Zynq / ZynqMP only

      • add basic PS configuration

      Activated interfaces:

      Scroll Title
      anchorTable_PSI
      title-alignmentcenter
      titlePS Interfaces

      Scroll Table Layout
      orientationportrait
      sortDirectionASC
      repeatTableHeadersdefault
      sortByColumn1
      sortEnabledfalse
      cellHighlightingtrue

      TypeNote
      DDR
      QSPIMIO
      SD1MIO
      I2C0MIO
      I2C1MIO
      UART0MIO
      GPIO0MIO
      GPIO1MIO
      GPIO2MIO
      SWDT0..1
      TTC0..3
      GEM3MIO
      USB0MIO
      PCIeMIO


      Constrains

      Basic module constrains

      Code Block
      languageruby
      title_i_bitgen_common.xdc
      set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
      set_property BITSTREAM.CONFIG.UNUSEDPIN PULLNONE [current_design]

      Design specific constrain

      Code Block
      languageruby
      title_i_false_path.xdc
      set_false_path -from [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/*/CLK}] -to [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/F_reg[*]/D}]
      set_false_path -from [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/toggle_reg/C}] -to [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/*/bl.DSP48E_2/*}]
      set_false_path -from [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/toggle_reg/C}] -to [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/*/bl.DSP48E_2/DSP_A_B_DATA_INST/*}]
      set_false_path -from [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/toggle_reg/C}] -to [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/*/bl.DSP48E_2/DSP_ALU_INST/*}]
      set_false_path -from [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/toggle_reg/C}] -to [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/*/bl.DSP48E_2/DSP_OUTPUT_INST/*}]
      set_false_path -from [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/toggle_reg/C}] -to [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/*/bl.DSP48E_2/DSP_C_DATA_INST/*}]
      set_false_path -from [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/FMETER_gen[4].COUNTER_F_inst/bl.DSP48E_2/DSP_ALU_INST/CLK}] -to [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/FMETER_gen[4].COUNTER_F_inst/bl.DSP48E_2/DSP_OUTPUT_INST/*}]
      set_false_path -from [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/FMETER_gen[5].COUNTER_F_inst/bl.DSP48E_2/DSP_ALU_INST/CLK}] -to [get_pins -hier -filter {name=~*labtools_fmeter_0/U0/FMETER_gen[5].COUNTER_F_inst/bl.DSP48E_2/DSP_OUTPUT_INST/*}]


      Code Block
      languageruby
      title_i_usp_rf_data_converter_0_example_design.xdc
      #----------------------------------------------------------------------
      # Title      : Example top level constraints for UltraScale+ RF Data Converter
      #----------------------------------------------------------------------
      # File       : usp_rf_data_converter_0_example_design.xdc
      #----------------------------------------------------------------------
      # Description: Xilinx Constraint file for the example design for
      #              UltraScale+ RF Data Converter core
      #---------------------------------------------------------------------
      #
      # DISCLAIMER
      # This disclaimer is not a license and does not grant any
      # rights to the materials distributed herewith. Except as
      # otherwise provided in a valid license issued to you by
      # Xilinx, and to the maximum extent permitted by applicable
      # law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
      # WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
      # AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
      # BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
      # INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
      # (2) Xilinx shall not be liable (whether in contract or tort,
      # including negligence, or under any other theory of
      # liability) for any loss or damage of any kind or nature
      # related to, arising under or in connection with these
      # materials, including for any direct, or any indirect,
      # special, incidental, or consequential loss or damage
      # (including loss of data, profits, goodwill, or any type of
      # loss or damage suffered as a result of any action brought
      # by a third party) even if such damage or loss was
      # reasonably foreseeable or Xilinx had been advised of the
      # possibility of the same.
      # 
      # CRITICAL APPLICATIONS
      # Xilinx products are not designed or intended to be fail-
      # safe, or for use in any application requiring fail-safe
      # performance, such as life-support or safety devices or
      # systems, Class III medical devices, nuclear facilities,
      # applications related to the deployment of airbags, or any
      # other applications that could lead to death, personal
      # injury, or severe property or environmental damage
      # (individually and collectively, "Critical
      # Applications"). Customer assumes the sole risk and
      # liability of any use of Xilinx products in Critical
      # Applications, subject only to applicable laws and
      # regulations governing limitations on product liability.
      # 
      # THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
      # PART OF THIS FILE AT ALL TIMES. 
      #
      #---------------------------------------------------------------------
      
      #------------------------------------------
      # TIMING CONSTRAINTS
      #------------------------------------------
      # Set AXI-Lite Clock to 100MHz
      #create_clock -period 10.000 -name usp_rf_data_converter_0_axi_aclk [get_pins axi_aclk_i/CFGMCLK]
      
      # ADC Reference Clock for Tile 0 running at 245.760 MHz
      create_clock -period 4.069 -name usp_rf_data_converter_0_adc0_clk [get_ports adc0_clk_p]
      
      # ADC Reference Clock for Tile 1 running at 245.760 MHz
      create_clock -period 4.069 -name usp_rf_data_converter_0_adc1_clk [get_ports adc1_clk_p]
      
      # ADC Reference Clock for Tile 2 running at 245.760 MHz
      create_clock -period 4.069 -name usp_rf_data_converter_0_adc2_clk [get_ports adc2_clk_p]
      
      # ADC Reference Clock for Tile 3 running at 245.760 MHz
      create_clock -period 4.069 -name usp_rf_data_converter_0_adc3_clk [get_ports adc3_clk_p]
      
      # DAC Reference Clock for Tile 0 running at 307.200 MHz
      create_clock -period 3.255 -name usp_rf_data_converter_0_dac0_clk [get_ports dac0_clk_p]
      
      # DAC Reference Clock for Tile 1 running at 307.200 MHz
      create_clock -period 3.255 -name usp_rf_data_converter_0_dac1_clk [get_ports dac1_clk_p]
      
      set_multicycle_path -to [get_pins -filter {REF_PIN_NAME== D} -of [get_cells -hier -filter {name =~ *usp_rf_data_converter_0_ex_i/ex_design/usp_rf_data_converter_0/inst/IP2Bus_Data_reg*}]] -setup 2
      set_multicycle_path -to [get_pins -filter {REF_PIN_NAME== D} -of [get_cells -hier -filter {name =~ *usp_rf_data_converter_0_ex_i/ex_design/usp_rf_data_converter_0/inst/IP2Bus_Data_reg*}]] -hold 1
      ###############################################################################
      # False paths
      # For debug in synth use
      # report_timing_summary -setup -slack_lesser_than 0
      ###############################################################################
      # Data generator/capture constraints
      set rfa_from_list   [get_cells -hier -regexp .*rf(?:da|ad)c_exdes_ctrl_i\/(?:da|ad)c_exdes_cfg_i\/.+num_samples_reg.*]
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_00*addrb_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_00*addrbend_reg}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_01*addrb_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_01*addrbend_reg}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_02*addrb_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_02*addrbend_reg}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_03*addrb_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_03*addrbend_reg}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_10*addrb_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_10*addrbend_reg}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_11*addrb_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_11*addrbend_reg}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_12*addrb_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_12*addrbend_reg}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_13*addrb_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_dac_signal_list [get_cells -hier -filter {name=~*dg_slice_13*addrbend_reg}]
      set_false_path -from $rfa_from_list -to $rfa_dac_signal_list
      set rfa_from_list   [get_cells -hier -regexp .*rf(?:da|ad)c_exdes_ctrl_i\/(?:da|ad)c_exdes_cfg_i\/.+num_samples_reg.*]
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_00*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_00*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_00*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_00*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_01*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_01*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_01*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_01*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_02*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_02*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_02*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_02*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_03*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_03*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_03*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_03*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_10*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_10*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_10*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_10*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_11*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_11*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_11*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_11*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_12*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_12*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_12*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_12*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_13*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_13*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_13*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_13*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_20*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_20*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_20*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_20*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_21*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_21*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_21*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_21*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_22*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_22*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_22*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_22*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_23*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_23*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_23*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_23*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_30*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_30*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_30*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_30*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_31*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_31*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_31*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_31*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_32*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_32*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_32*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_32*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_33*addra_reg[*]}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_33*working_i_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_33*cap_complete_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      set rfa_adc_signal_list [get_cells -hier -filter {name=~*ds_slice_33*wea_r_reg}]
      set_false_path -from $rfa_from_list -to $rfa_adc_signal_list
      
      
      Software Design - Vitis
       -from $rfa_from_list -to $rfa_adc_signal_list
      
      

      Software Design - Vitis

      Scroll Ignore
      scroll-pdftrue
      scroll-officetrue
      scroll-chmtrue
      scroll-docbooktrue
      scroll-eclipsehelptrue
      scroll-epubtrue
      scroll-htmltrue


      Page properties
      hiddentrue
      idComments
      Note:
      • optional chapter separate

      • sections for different apps

      For SDK project creation, follow instructions from:

      Vitis

      Application

      Page properties
      hiddentrue
      idComments

      ----------------------------------------------------------

      FPGA Example

      scu

      MCS Firmware to configure SI5338 and Reset System.

      srec_spi_bootloader

      TE modified 20192020.2 SREC

      Bootloader to load app or second bootloader from flash into DDR

      Descriptions:

      • Modified Files: blconfig.h, bootloader.c
      • Changes:
        • Add some console outputs and changed bootloader read address.
        • Add bugfix for 2018.2 qspi flash

      xilisf_v5_11

      TE modified 20192020.2 xilisf_v5_11

      • Changed default Flash type to 5.

      ----------------------------------------------------------

      Zynq Example:

      zynq_

      fsbl

      TE modified 20192020.2 FSBL

      General:

      • Modified Files: main.c, fsbl_hooks.h/.c (search for 'TE Mod' on source code)
      • Add Files: te_fsbl_hooks.h/.c (for hooks and board)\n\

      • General Changes: 
        • Display FSBL Banner and Device ID

      Module Specific:

      • Add Files: all TE Files start with te_*
        • READ MAC from EEPROM and make Address accessible by UBOOT (need copy defines on uboot  uboot platform-top.h)
        • CPLD access
        • Read CPLD Firmware and SoC Type
        • Configure Marvell PHY
      zynq_

      fsbl_flash

      TE modified 20192020.2 FSBL

      General:

      • Modified Files: main.c
      • General Changes:
        •  Display Display FSBL Banner
        • Set FSBL Boot Mode to JTAG
        • Disable Memory initialisation

      ZynqMP Example:

      ----------------------------------------------------------

      zynqmp_fsbl

      TE modified 20192020.2 FSBL

      General:

      • Modified Files: xfsbl_main.c, xfsbl_hooks.h/.c, xfsbl_board.h/.c (search for 'TE Mod' on source code)
      • Add Files:   te_xfsbl_hooks.h/.c (for hooks and board)\n\
      • General Changes: 
        • Display FSBL Banner and Device Name

      Module Specific:

      • Add Files: all TE Files start with te_*
        • Si5338 Configuration
        • ETH+OTG Reset over MIO

      zynqmp_fsbl_flash

      TE modified 20192020.2 FSBL

      General:

      • Modified Files: xfsbl_initialisation.c, xfsbl_hw.h, xfsbl_handoff.c, xfsbl_main.c
      • General Changes:
        •  Display Display FSBL Banner
        • Set FSBL Boot Mode to JTAG
        • Disable Memory initialisation


      zynqmp_pmufw

      Xilinx default PMU firmware.

      ----------------------------------------------------------

      General Example:

      hello_te0820

      Hello TE0820 is a Xilinx Hello World example as endless loop instead of one console output.

      u-boot

      U-Boot.elf is generated with PetaLinux. Vitis  Vitis is used to generate Boot.bin.


      Template location: ./sw_lib/sw_apps/

      zynqmp_fsbl

      TE modified 20192020.2 FSBL

      General:

      • Modified Files: xfsbl_main.c, xfsbl_hooks.h/.c, xfsbl_board.h/.c(search for 'TE Mod' on source code)
      • Add Files:   te_*xfsbl_hooks.h/.c (for hooks and board)
      • General Changes: 
        • Display FSBL Banner and Device Name

      Module Specific:

      • Add Files: all TE Files start with te_*
        • Si5395 on the TE0835 RFSoC module configuration
        • Si5395 on the TEB0835 carrier board configuration

      zynqmp_fsbl_flash

      TE modified 20192020.2 FSBL

      General:

      • Modified Files: xfsbl_initialisation.c, xfsbl_hw.h, xfsbl_handoff.c, xfsbl_main.c
      • General Changes:
        • Display FSBL Banner
        • Set FSBL Boot Mode to JTAG
        • Disable Memory initialisation

      zynqmp_pmufw

      Xilinx default PMU firmware.

      hello_te0835

      Hello TE0835 is a Xilinx Hello World example as endless loop instead of one console output.

      u-boot

      U-Boot.elf is generated with PetaLinux. Vitis  is used to generate Boot.bin.

      Software Design -  PetaLinux

      Boot.bin.

      Software Design -  PetaLinux

      Scroll Ignore
      scroll-pdftrue
      scroll-officetrue
      scroll-chmtrue
      scroll-docbooktrue
      scroll-eclipsehelptrue
      scroll-epubtrue
      scroll-htmltrue


      Page properties
      hiddentrue
      idComments
      Note:
      • optional chapter separate

      • sections for linux

      • Add "No changes." or "Activate: and add List"

      For PetaLinux installation and  project creation, follow instructions from:

      Config

      Start with petalinux-config or petalinux-config --get-hw-description

      Changes:

      • CONFIG_SUBSYSTEM_ETHERNET_PSU_ETHERNET_3_MAC=""

      U-Boot

      Start with petalinux-config -c u-boot

      Changes:

      • CONFIG_ENV_IS_NOWHERE=y

      • # CONFIG_ENV_IS_IN_SPI_FLASH is not set

      • CONFIG_I2C_EEPROM=y

      • CONFIG_ZYNQ_GEM_I2C_MAC_OFFSET=0xFA

      • CONFIG_SYS_I2C_EEPROM_ADDR=0

      • CONFIG_SYS_I2C_EEPROM_BUS=0

      • CONFIG_SYS_EEPROM_SIZE=256

      • CONFIG_SYS_EEPROM_PAGE_WRITE_BITS=0

      • CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS=0

      • CONFIG_SYS_I2C_EEPROM_ADDR_LEN=1

      • CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW=0

      Change platform-top.h:

      Code Block
      languagejs

      Device Tree

      Code Block
      languagejs
      /include/ "system-conf.dtsi"
      / {
        chosen {
          xlnx,eeprom = &eeprom;
        };
      };
      
      
      /* SDIO */
      
      &sdhci1 {
         disable-wp;
         no-1-8-v;
      };
      
      /* ETH PHY */
      &gem3 {
      
      	status = "okay";
        ethernet_phy0: ethernet-phy@0 {
      		compatible = "marvell,88e1510";
      		device_type = "ethernet-phy";
          		reg = <1>;
      	};
      };
      /* USB 2.0 */
       
      /* USB  */
      &dwc3_0 {
          status = "okay";
          dr_mode = "host";
          maximum-speed = "high-speed";
          /delete-property/phy-names;
          /delete-property/phys;
          /delete-property/snps,usb3_lpm_capable;
       	 snps,dis_u2_susphy_quirk;
        	snps,dis_u3_susphy_quirk;
      };
         
      &usb0 {
          status = "okay";
          /delete-property/ clocks;
          /delete-property/ clock-names;
          clocks = <0x3 0x20>;
          clock-names = "bus_clk";
      };
      
      
      
      
      /* QSPI PHY */
      &qspi {
          #address-cells = <1>;
          #size-cells = <0>;
          status = "okay";
          flash0: flash@0 {
              compatible = "jedec,spi-nor";
              reg = <0x0>;
              #address-cells = <1>;
              #size-cells = <1>;
          };
      };
      
      // This I2C Port can be found in the RFSoC Module TE0835 to control PLL chip SI5395A-A-GM on the
      // RFSoC Module.
      
      &i2c1 {
        eeprom: eeprom@50 { 
           compatible = "atmel,24c08";
           reg = <0x50>;
        };
      };
      
      // This I2C Port connects RFSoC FPGA on the RFSoC Module and I2C multiplexer Chip on the carrier
      // board through B2B connector.  
      
      &i2c0 {
      
      	// This I2C multiplexer chip can be found in TEB0835 carrier board.
      
      	i2c_mux@70 { /* TCA9544APWR U7 in the carrier board TEB0835 */
      		compatible = "nxp,pca9544";
      		#address-cells = <1>;
      		#size-cells = <0>;
      		reg = <0x70>;
      
      		i2c@0 { /* FireFly_B*/
      			#address-cells = <1>;
      			#size-cells = <0>;
      			reg = <0>;
      		};
      		i2c@1 { /* FireFly_A*/
      			#address-cells = <1>;
      			#size-cells = <0>;
      			reg = <1>;
      		};
      		i2c@3 { /* LM96163CISD/NOPB U9 FAN Controller in the carrier board TEB0835*/
      			#address-cells = <1>;
      			#size-cells = <0>;
      			reg = <3>;
      			temp@4c {/* lm96163 - u9*/
      			   	compatible = "national,lm96163";
      			    	reg = <0x4c>;
      			  };
      		};
      		i2c@4 { /* SI5395A-A-GM U5 DPLL in the carrier board TEB0835*/
      			#address-cells = <1>;
      			#size-cells = <0>;
      			reg = <4>;
      			clock-generator@68{/* SI5395A-A-GM U5 DPLL in the carrier board TEB0835 */
      				      	compatible = "silabs,si5395";
      				      	reg = <0x68>;
      				    	};
      		};
      	};
      };
      
      
      
      

      FSBL patch

      Must be add manually, see template


      Kernel

      Start with petalinux-config -c kernel

      Changes:

      • CONFIG_CPU_IDLE is not set (only needed to fix JTAG Debug issue)

      • CONFIG_CPU_FREQ is not set (only needed to fix JTAG Debug issue)

      • CONFIG_EDAC_CORTEX_ARM64=y

      Rootfs

      Start with petalinux-config -c rootfs

      Changes:

      • CONFIG_i2c-tools=y
      • CONFIG_busybox-httpd=y (for web server app)
      • CONFIG_packagegroup-petalinux-utils(util-linux,cpufrequtils,bridge-utils,mtd-utils,usbutils,pciutils,canutils,i2c-tools,smartmontools,e2fsprogs)

      Applications

      See: "<project folder>\os\petalinux\project-spec\meta-user\recipes-apps\"

      startup

      Script App to load init.sh from SD Card if available.

      webfwu

      Webserver application accemble for Zynqmp RFSoC access. Need busybox-httpd

      Additional Software

      Scroll Ignore
      scroll-pdftrue
      scroll-officetrue
      scroll-chmtrue
      scroll-docbooktrue
      scroll-eclipsehelptrue
      scroll-epubtrue
      scroll-htmltrue


      Page properties
      hiddentrue
      idComments
      Note:
      • Add description for other Software, for example SI CLK Builder ...
      • SI5338 and SI5345 also Link to:

      No additional software is needed.

      SI5395 of RFSoC module

      File location <design name>/misc/Si5395/Si5395-*-835-*.slabtimeproj

      General documentation how you work with these project will be available on Si5395

      SI5395 of carrier board

      File location <design name>/misc/Si5395/Si5395-*-B835-*.slabtimeproj

      General documentation how you work with these project will be available on Si5395

      Appx. A: Change History and Legal Notices

      with these project will be available on Si5395

      Appx. A: Change History and Legal Notices

      Scroll Ignore
      scroll-pdftrue
      scroll-officetrue
      scroll-chmtrue
      scroll-docbooktrue
      scroll-eclipsehelptrue
      scroll-epubtrue
      scroll-htmltrue

      Document Change History

      To get content of older revision  got to "Change History"  of this page and select older document revision number.

      Page properties
      hiddentrue
      idComments
      • Note this list must be only updated, if the document is online on public doc!
      • It's semi automatically, so do following
        • Add new row below first

        • Copy "Page Information Macro(date)" Macro-Preview, Metadata Version number, Author Name and description to the empty row. Important Revision number must be the same as the Wiki document revision number Update Metadata = "Page Information Macro (current-version)" Preview+1 and add Author and change description. --> this point is will be deleted on newer pdf export template

        • Metadata is only used of compatibility of older exports


      Scroll Title
      anchorTable_dch
      titleDocument change history.

      Scroll Table Layout
      orientationportrait
      sortDirectionASC
      repeatTableHeadersdefault
      widths2*,*,3*,4*
      sortByColumn1
      sortEnabledfalse
      cellHighlightingtrue

      DateDocument Revision

      Authors

      Description

      Page info
      infoTypeModified date
      dateFormatyyyy-MM-dd
      typeFlat

      Page info
      infoTypeCurrent version
      dateFormatyyyy-MM-dd
      prefixv.
      typeFlat

      Page info
      infoTypeModified by
      typeFlat

      • Release 2020.2
      2020-12-09v.25John Hartfiel
      • Style changes
      • additional notes
      2020-11-02v.20Mohsen Chamanbaz
      • Release 2019.2
      --all

      Page info
      infoTypeModified users
      dateFormatyyyy-MM-dd
      typeFlat

      --


      Legal Notices

      Include Page
      IN:Legal Notices
      IN:Legal Notices








      Scroll Only
      scroll-pdftrue
      scroll-officetrue
      scroll-chmtrue
      scroll-docbooktrue
      scroll-eclipsehelptrue
      scroll-epubtrue
      scroll-htmltrue


      HTML
      <style>
      .wiki-content .columnLayout .cell.aside {
      width: 0%;
      }</style>
      



      Scroll pdf ignore


      Custom_fix_page_content
      Scroll pdf ignore

      Table of contents

      Table of Contents
      outlinetrue