Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Page properties
hiddentrue
idComments

Note for Download Link of the Scroll ignore macro:


Scroll Ignore

Download PDF version of this document.


Scroll pdf ignore

Table of Contents

Table of Contents

...

The Trenz Electronic TE0716 is a commercial-grade* SoM (System on Module) based on Xilinx Zynq-7000 SoC XC7Z020*, with 1GB of DDR3L-1600 SDRAM*, 32MB of SPI flash memory, 10x 12-Bit Low Power SAR ADCs, 512Kb Serial EEPROM, Gigabit Ethernet PHY transceiver, a an USB PHY transceiver, a single chip USB 2.0 to UART/JTAG Interface (Xilinx License included), and powerful switching-mode power supplies for all on-board voltages. A large number of configurable I/Os are provided via rugged high-speed board-to-board connectors.

Refer to http://trenz.org/te0716-info for the current online version of this manual and other available documentation.

Notes: * standard values but depends on assembly version. Additional assembly options are available for cost or performance optimization upon request.

Page properties
hiddentrue
idComments

Notes :

...

  • SoC/FPGA
    • Package: CLG484
    • Device: Xilinx Z-7020
    • Speed: -1 *
    • Temperature: C grade *.
  • RAM/Storage
    • Low Power DDR3 SDRAM on PS
      • Data width: 32bit
      • Size: def. 1GB *
      • Speed: 1600 Mbps **
    • QSPI boot Flash
      • Data width: 4bit
      • size: 32MB *
    • MAC address serial EEPROM with EUI-48™ node identity (Microchip 24AA025E48).
    • 512Kb user MAC address serial EEPROM.
  • On Board
    • 10x 12-Bit Low Power SAR ADCs up to 2 MSPS (NCD98011).
    • Low Power Oscillators.
    • Gigabit Ethernet PHY transceiver PHY (Marvell Alaska 88E1512).
    • Hi-speed USB2 High-Speed USB 2.0 ULPI transceiver with full OTG support (Microchip USB3320C).
    • Single chip High-Speed USB 2.0 to UART/JTAG Interface (Xilinx License included) (FTDI FT2232H).
    • 2xUser RGB 2x User RGB LEDs (Green), LED FPGA DONE "Done" (Green).
    • 2 x Tactile 2x Tactile Switches (User), 1 x Tactile Switche (Reset).
  • Interface
    • 120 x 120x HR PL I/Os (3 banks).
    • 2x PS MIOs (shared with UART TX/RX ZYNQ-FTDI).
    • 1 Gbps RGMII Ethernet interface.
    • High Speed USB2 Speed USB 2.0 ULPI with full OTG support.
    • High Speed USB 2.0 to UART/JTAG Interfaceinterface, including microUSB-B connector.
    • Card Connector microSD™.
    • JTAG.
  • Power
    • On-board high-efficiency DC-DC converters for all voltages used.
  • Dimension
    • 65 x 45 mm
  • Notes
    • * depends on assembly version
    • ** depends on used Zynq and DDR3 combination

...

Scroll Title
anchorFigure_OV_BD
titleTExxxx TE0716-01 block diagram


Scroll Ignore

draw.io Diagram
borderfalse
diagramNameDB-TE0716-01
simpleViewerfalse
width
linksauto
tbstylehidden
diagramDisplayName
lboxtrue
diagramWidth641
revision919


Scroll Only

Image RemovedImage Added



Main Components

...

Scroll Title
anchorFigure_OV_MC
titleTExxxx TE0716-01 main components


Scroll Ignore

draw.io Diagram
borderfalse
diagramNameMC-TE0716-01
simpleViewerfalse
width
linksauto
tbstylehidden
diagramDisplayName
lboxtrue
diagramWidth642641
revision1618



Scroll Only

Image Modified



  1. Xilinx Zynq XC7Z SoC, U5 (Top)
  2. 4Gbit DDR3/L SDRAM, U13 (Top)
  3. 4Gbit DDR3/L SDRAM, U12 (Top)
  4. 32MByte Quad SPI Flash memory, U7 (Top)
  5. 2Kbit MAC address serial EEPROM with EUI-48TM node identity, U24

Initial Delivery State

Page properties
hiddentrue
idComments

Notes :

Only components like EEPROM, QSPI flash can be initialized by default at manufacture.

If there is no components which might have initial data ( possible on carrier) you must keep the table empty

...

anchorTable_OV_IDS
titleInitial delivery state of programmable devices on the module

...

Storage device name

...

Content

...

Notes

...

Quad SPI Flash

...

-

...

-

...

  1. (Top)
  2. 512Kb Serial EEPROM memory, U21 (Top)
  3. 10x 12-Bit Low Power SAR ADCs, U1..U4, U10, U11, U15..U17, U19 (Top)
  4. High-speed USB 2.0 ULPI transceiver, U18 (Top)
  5. Single chip USB Interface 2.0 to UART / JTAG, U39 (Top)
  6. MicroUSB-B connector, J13 (Top)
  7. Low-power oscillator @ 12.000000MHz (OSCI-FTDI), U41 (Top)
  8. Low-power oscillator @ 25.000000MHz (ETH-CLK), U9 (Top)
  9. LED FPGA "Done" (Green) D3 (Top)
  10. User RGB LED 1 D4 (Top)
  11. User RGB LED 2 D5 (Top)
  12. Tactile Switch (User), S1 (Top)
  13. Tactile Switch (User), S2 (Top)
  14. Tactile Switch (Reset), S3 (Top)
  15. 5A Synchronous Buck DC-DC Converter (1V), U37 (Top)
  16. 2A Synchronous Buck DC-DC Converter (3.3V), U46 (Top)
  17. 2A Synchronous Buck DC-DC Converter (1.8V), U45 (Top)
  18. 2A Synchronous Buck DC-DC Converter (1.5V), U43 (Top)
  19. 250mA Ultra-Low Noise LDO Regulator (3.3V_ADC Digital I/O supply), U23 (Top)
  20. 250mA Ultra-Low Noise LDO Regulator (ADC_VAA Analog supply/reference, 3.3V), U38 (Top)
  21. Gigabit Ethernet PHY transceiver, U8 (Bottom)
  22. Low-power oscillator @ 33.333333MHz (PS-CLK), U6 (Bottom)
  23. 3A Sink/Source DDR Termination Regulator (VTT/VTTREF, 0.75V), U47 (Bottom)
  24. Card Connector microSD™, J2 (Bottom)
  25. 2x60 positions high speed/density plug connector, JP1 (Bottom)
  26. 2x60 positions high speed/density plug connector, JP2 (Bottom)


Initial Delivery State

Page properties
hiddentrue
idComments

Notes :

Only components like EEPROM, QSPI flash can be initialized by default at manufacture.

If there is no components which might have initial data ( possible on carrier) you must keep the table empty


Scroll Title
anchorTable_OV_IDS
titleInitial delivery state of programmable devices on the module

Scroll Table Layout
orientation

Configuration Signals

Page properties
hiddentrue
idComments
  • Overview of Boot Mode, Reset, Enables.

Boot process.

The TE0716 supports QSPI and SD Card boot modes, which is controlled by the insertion of the SD card before powering on.

Boot Mode
Scroll Title
anchorTable_OV_BP
titleBoot process.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Storage device name

IC Designator

Content

SD Card State

Notes

SD card inserted

SD Card (J2)

-SD card not presentQSPI (U7)-

Reset process.

The nRST signal active low reset input, forces PS_POR_B to apply a master reset of the entire Zynq. This reset could be manually done by pressing a switch. This signal could be also reached by a B2B large connector.

This nRST signal (active low) is also held until all FPGA power supplies set their Power Good signals.

Furthermore, if the FPGA core voltage drops under 0.84V or the 3.3V power supply drops to 2.94V or less, this nRST signal is also activated by the Voltage Monitor.

See more about the Power-on Reset (PS_POR_B) signal in the “Zynq-7000 SoC Technical Reference Manual” (“UG585”).

Quad SPI Flash

U7Empty

-

512Kb Serial EEPROMU21Empty

-

2Kb 24AA025E48 EEPROMU24Pre-programmed globally unique, 48-bit node address (MAC).-
4Kb M93C66-R EEPROMU40Xilinx JTAG Programmer LicenseFor FTDI IC only (U39).



Configuration Signals

Page properties
hiddentrue
idComments
  • Overview of Boot Mode, Reset, Enables.

Boot process.

The TE0716 supports QSPI and SD Card boot modes, which is controlled by the insertion of the SD card before powering on.

Scroll Title
anchorTable_OV_BP
titleBoot process.

Scroll Table Layout
orientationportrait
sortDirectionASC

Scroll Title
anchorTable_OV_RST
titleReset process.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Signal

B2BI/ONote

nRST

JP2-4--
nRST-S3-

Signals, Interfaces and Pins

Page properties
hiddentrue
idComments

Notes :

  • For carrier or stand-alone boards use subsection for every connector type (add designator on description, not on the subsection title), for example:
    • SD
    • USB
    • ETH
    • FMC
    • ...
  • For modules which needs carrier use only classes and refer to B2B connector if more than one is used, for example
    • JTAG
    • UART
    • I2C
    • MGT
    • ...

Board to Board (B2B) I/Os

SD Card State

Boot ModeNotes

SD card inserted

SD Card (J2)

-
SD card not presentQSPI (U7)-



Reset process.

The nRST signal active low reset input, forces PS_POR_B to apply a master reset of the entire Zynq. This reset could be manually done by pressing a switch. This signal could be also reached by a B2B large connector.

This nRST signal (active low) is also held until all FPGA power supplies set their Power Good signals.

Furthermore, if the FPGA core voltage drops under 0.84V or the 3.3V power supply drops to 2.94V or less, this nRST signal is also activated by the Voltage Monitor.

See more about the Power-on Reset (PS_POR_B) signal in the “Zynq-7000 SoC Technical Reference Manual” (“UG585”).Zynq SoC's I/O banks signals connected to the B2B connectors:

3.3V
Scroll Title
anchorTable_SIPOV_B2BRST
titleGeneral PL I/O to B2B connectors informationReset process.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

FPGA Bank

Signal

B2B
Connector
I/O
Signal Count
Voltage Level
Note
NotesMIO 500JP12

nRST

JP2-4--
nRST-
HR 35
S3
JP1483.3V-HR 13JP2503.3V-HR 33JP2223.3V-

...

-


Signals, Interfaces and Pins

Page properties
hiddentrue
idComments

Notes :

  • For carrier or stand-alone boards use subsection for every connector type (add designator on description, not on the subsection title), for example:
    • SD
    • USB
    • ETH
    • FMC
    • ...
  • For modules which needs carrier use only classes and refer to B2B connector if more than one is used, for example
    • JTAG
    • UART
    • I2C
    • MGT
    • ...

Board to Board (B2B)

FPGA IOs

Zynq SoC's I/O banks signals connected to the B2B connectors:JTAG access to the TExxxx SoM through B2B connector JMX.

Scroll Title
anchorTable_SIP_JTGB2B
titleJTAG pins connectionGeneral PS-PL I/O to B2B connectors information

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

JTAG Signal
FPGA BankB2B ConnectorI/O Signal CountVoltage LevelNotes
TMSJP2-7Also Connected to U39 (FTDI)
TDIJP2-11Also Connected to U39 (FTDI)
TDOJP2-10Also Connected to U39 (FTDI)
TCK

JP2-8

Also Connected to U39 (FTDI)

MIO Pins

MIO 500JP123.3V-
HR 35JP1483.3V-
HR 13JP2503.3V-
HR 33JP2223.3V-



JTAG Interface

JTAG access to the TE0716 SoM through B2B connector JP2. The TE0716 is also provided with a FTDI USB-to-JTAG adapter connected to the MicroUSB connector J13, but ONLY ONE connection for JTAG should be used at the time!.

you must fill the table below with group of MIOs which are connected to a specific components or peripherals, you do not have to specify pins in B2B, Just mention which B2B is connected to MIOs. The rest is clear in the Schematic.

Example:

B2B
Page properties
hiddentrue
idComments
MIO PinConnected toB2BNotes
MIO12...14

SPI_CS , SPI_DQ0... SPI_DQ3

SPI_SCK

J2QSPI
Scroll Title
anchorTable_SIP_MIOsJTG
titleMIOs JTAG pins connection

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

JTAG Signal

B2B Connector

MIO PinConnected to

Notes
15UART_TX_ZYNQJP1-70Also Connected to U36-2. To use this signal from B2B connector, "UART_OB_DISABLE" (JP1-11) must be "High".14UART_RX_ZYNQJP1-71Also Connected to U36-3. To use this signal from B2B connector, "UART_OB_DISABLE" (JP1-11) must be "High".