Download PDF version of this document.

Table of Contents

Overview

Refer to https://wiki.trenz-electronic.de/display/PD/TE0710+TRM for online version of this manual and the rest of available documentation.

Trenz Electronic TE0710 is an industrial-grade FPGA module integrating a Xilinx Artix-7 FPGA, two 10/100 Mbit Ethernet PHYs, 512 MByte DDR3 SDRAM, 32 MByte Quad SPI Flash memory for configuration and operation and powerful switching-mode power supplies for all on-board voltages. Numerous configurable I/Os are provided via rugged high-speed strips. All this on a tiny footprint, smaller than a credit card size at very competitive price. All Trenz Electronic SoMs in 4 x 5 cm form factor are mechanically compatible.

Key Features

NB! Assembly options for cost or performance optimization are available upon request.

Block Diagram

Figure 1: TE0710-02 block diagram.

Main Components

   

Figure 2: TE0710-02 PCB.

  1. Xilinx Artix-7 FPGA , U5
  2. Voltage regulator for DDR3 SDRAM (Texas Instruments TPS51206), U2
  3. 512 MByte DDR3 SDRAM (Memphis MEM4G08D3EABG), U12
  4. 1A PowerSoC DC-DC converter for 1.5V (Altera EN5311QI), U10
  5. 32 MByte Quad SPI Flash memory (Cypress S25FL256S), U7
  6. System Controller CPLD (Lattice Semiconductor LCMXO2-256HC), U4
  7. 4A PowerSoC DC-DC converter for 1.0V (Altera EN6347QI), U1
  8. Programmable oscillator @25.000000 MHz for Ethernet reference clock (SiTime SiT8008), U9
  9. B2B connector (0,40 mm Razor Beam™ High Speed Hermaphroditic Strip LSHM-150), JM2
  10. B2B connector (0,40 mm Razor Beam™ High Speed Hermaphroditic Strip LSHM-150), JM1
  11. 1A PowerSoC DC-DC converter for 1.5V for 1.8V (Altera EN5311QI), U11
  12. 10/100 Mbps Ethernet PHY (Texas Instruments TLK106), U3
  13. 10/100 Mbps Ethernet PHY (Texas Instruments TLK106), U6
  14. 2 Kbit serial EEPROM with UNI/O serial interface (Microchip 11AA02E48T-I/TT), U13
  15. Programmable oscillator @100.000000 MHz for reference clock (SiTime SiT8008), U8

Initial Delivery State

Storage Component

Content

Notes

SPI Flash OTP Area

Empty, not programmed

Except serial number programmed by flash vendor.

SPI Flash Quad Enable bit

Programmed

-

SPI Flash main arraay

Empty-

eFUSE USER

Not programmed

-

eFUSE Security

Not programmed

-

Table 1: TE0710-02 module initial delivery state.

Signals, Interfaces and Pins

Board to Board (B2B) I/Os

FPGAs I/O banks, voltages and B2B connections:

BankType

B2B

Connector

I/O Signal

Count

VoltageNotes

14

HR

JM1

8 I/O pins

3.3V

HR banks support voltages from 1.2V to 3.3V.

See Xilinx Artix-7 datasheet (DS181) for voltage ranges.

15

HR

JM1

48 I/O pins

24 LVDS pairs

User

Same as above.

16

HR

JM1

6 I/O pins

3 LVDS pairs

3.3V

Same as above.
34HRJM2

50 I/O pins

24 LVDS pairs

UserSame as above.

Table 2: FPGA I/O banks.

Please refer to Pin-out tables page for more information.

JTAG Interface

JTAG access to the Xilinx Artix-7 and System Controller CPLD is provided through B2B connector JM2.

JTAG SignalB2B Pin
TMSJM2-93
TDIJM2-95
TDOJM2-97
TCK

JM2-99

Table 3: JTAG interface connector.

JTAGEN pin on B2B connector JM1 is used to control which physical device is accessible via JTAG interface. If this pin is set to low or left open, JTAG interface is enabled for Xilinx Artix-7 FPGA, if set to high, JTAG interface for System Controller CPLD will be enabled.

The use of Xilinx legacy development tools (ISE, iMPACT) is not recommended. iMPACT does not recognize any Xilinx Artix-7 below A100T model.

System Controller I/O Pins

Special purpose pins are connected to the System Controller CPLD which have following default function:

Pin NameModeFunctionDefault Configuration

B2B Pin

PGOODOutputPower GoodActive high when all on-module power supplies are operating properly.JM1-30
RESINInputResetActive low, drive low to keep system in reset state (FPGA pin PROG_B will be driven by CPLD).JM2-18
EN1InputResetSame as RESIN, can be left unconnected.JM1-28
JTAGENInputJTAG SelectLow for normal operation, high (3.3V) to enable JTAG for System Controller CPLD.JM1-89
MODE--Not used by default, leave open.JM1-32
NOSEQ--Not used by default, leave open.JM1-7

Table 4: Special purpose pins description of the System Controller CPLD.

On-board LEDs

There are three LEDs available on TE0710-02 SoM. Two are status LEDs, and one can be freely used by user design. The user LED is routed to the FPGA as 'USERLED'.

When the FPGA is not configured the status LEDs will flash continuously. Once the FPGA configuration has completed, the status LEDs can be used by the user FPGA design.

LEDColorConnected toDescription and Notes
D1RedSYSLED2System Controller status LED, connected to CPLD.
D2GreenSYSLED1System Controller status LED, connected to CPLD.
D3RedUSERLEDUser LED, active LOW, connected to FPGA pin L15.

Table 5: On-board LEDs.

Clocking

The TE0710-02 SoM is equipped with two MEMS oscillators to provide clock signals for two on-board Ethernet PHYs and DDR3 SDRAM.

ClockFrequencyICConnected toNotes

Ethernet reference

25 MHz

U9, SiT8008AI-73-XXS-25.000000EICs U3, U6 TLK106RHBClock signal shared by both Ethernet PHYs.
DDR3 SDRAM reference100 MHz

U8, SiT8008AI-73-XXS-100.000000E

FPGA bank 35, pin F4Differential clock signal for DDR3 SDRAM IC, U12.

Table 6: Clocks overview.

On-board Peripherals

32 MByte Quad SPI Flash Memory

An SPI flash memory S25FL256S (U7) is provided for FPGA configuration file storage. After configuration completes the remaining free memory can be used for application data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency used.

SPI Flash QE (Quad Enable) bit must be set to high or FPGA is unable to load its configuration from flash during power-on. By default this bit is set to high at the manufacturing plant.

System Controller CPLD

System Controller CPLD (Lattice MachXO2-256HC, U4) is used to control FPGA configuration process. The FPGA is held in reset (by driving the PROG_B signal low) until all power supplies have stabilized.

By driving signal RESIN to low you can reset the FPGA. This signal can be driven from the user’s baseboard PCB via the B2B connector JM2 pin 18.

Input EN1 is also gated to FPGA reset, should be open or pulled up for normal operation. By driving EN1 low, on-board DC-DC converters are not turned off.

User can create their own System Controller design using Lattice Diamond software. Once created it can be programmed into CPLD via JTAG interface.

DDR3 SDRAM

The TE0710-02 SoM has one 512 MByte volatile DDR3 SDRAM IC (U12) for storing user code and data.

Configuration of the DDR3 memory controller in the FPGA should be done using the MIG tool in the Xilinx Vivado Design Suite IP catalog.

Ethernet PHYs

The TE0710-02 is equipped with two Texas Instruments TLK106 10/100 Mbit Ethernet PHYs (U3 and U6). The I/O voltage is fixed at 3.3V. The reference clock input for both PHYs is supplied by on-board 25 MHz oscillator (U9). Both Ethernet PHYs are connected to FPGA bank 14 using MII interface.

Note: Pin ETH2_INT (power down or interrupt, default function is power down) is connected to FPGA bank 16 (pin D10).

MAC Address EEPROM

TE0710-02 module is equipped with 2 Kbit serial Electrically Erasable PROM (EEPROM, U14).  It provides pre-programmed 48-bit Extended Unique Identifier (EUI-48™) to identify network hardware MAC address which is write-protected to ensure tamper-proof designs. This EEPROM can be accessed by UNI/O® serial interface bus using Manchester encoding techniques. The clock and data are combined into a single, serial bit stream (SCIO), where the clock signal is extracted by the receiver to correctly decode the timing and value of each bit. The bus is controlled by a master device (Xilinx Artix-7) which determines the clock period, controls the bus access and initiates all operations, while the EEPROM works as a slave. Refer to Microchip's 11AA02E48 datasheet for more information.

Power and Power-On Sequence

Power Supply

Power supply with minimum current capability of 2A for system startup is recommended.

 Power Input PinVoltage RangeCurrent
VIN3.3V to 5.5VTypical 200mA, depends on customer design and setup.
3.3VIN3.3VTypical 50mA, depends on customer design and setup.

Table 7: Typical power consumption during normal operation.

VIN and 3.3VIN can be connected to the same power source (3.3 V).

Lowest power consumption is achieved when powering the module from single 3.3V power supply. When using split 3.3V/5V supplies the power consumption (and heat dissipation) will rise, this is due to the DC-DC converter efficiency (it decreases when VIN/VOUT ratio rises).

Power-On Sequence

For highest efficiency of on-board DC-DC regulators, it is recommended to use same 3.3V power source for both VIN and 3.3VIN power rails. Although VIN and 3.3VIN can be powered up in any order, it is recommended to power them up simultaneously.

It is important that all baseboard I/Os are 3-stated at power-on until System Controller sets PGOOD signal high (B2B connector JM1, pin 30), or 3.3V is present on B2B connector JM2 pins 10,12 or 91, meaning that all on-module voltages have become stable and module is properly powered up.

See Xilinx datasheet DS181 (for Artix7) for additional information. User should also check related baseboard documentation when choosing baseboard design for TE0710-02 module.

A 3.3V supply is also needed and must be supplied from the user's PCB. An output 3.3V supply is available on some of the board connector pins (see section 'Power Rails'). The input 3.3VIN will be switched to the internal 3.3V voltage level after the FPGA 1.0V supply is stable. Than 3.3V supply will be available on the B2B connector pins.

The regulators can be powered from the 3.3V supply or a 5V supply if preferred. The options for powering the board are as follows:

Power Rails and Bank Voltages

Voltages on B2B-

Connectors

B2B JM1-PinB2B JM2-PinDirectionNote
VIN

1, 3, 5

2, 4, 6, 8InputSupply voltage
3.3VIN13, 15-InputSupply voltage
VCCIO159, 11-InputHigh range bank voltage
VCCIO34-7, 9InputHigh range bank voltage
3.3V-10, 12OutputInternal 3.3V voltage level
JTAG VREF-91OutputJTAG reference voltage (3.3V).
1.8V39-OutputInternal 1.8V voltage level
1.5V-19OutputInternal 1.5V voltage level

Table 8: Power rails on B2B connectors.

FPGA BankSchematics NameVoltageRange
0 Config3.3V3.3V-
143.3V3.3V- 
15VCCIO15UserHR: 1.2V to 3.3V
163.3V3.3V-
34VCCIO34UserHR: 1.2V to 3.3V
351.5V1.5V- 

Table 9: FPGA bank voltages.

See Xilinx Artix-7 datasheet DS181 for allowed voltage ranges.

Board to Board Connectors

Variants Currently In Production

Module Variant

FPGA

FPGA Junction Temperature

Operating Temperature Range
TE0710-02-35-2IFXC7A35T-2CSG324I-40°C to 100°CIndustrial grade
 TE0710-02-100-2IFXC7A100T-2CSG324I-40°C to 100°CIndustrial grade
 TE0710-02-35-2CFXC7A35T-2CSG324C0°C to 85°CCommercial grade
TE0710-02-100-2CFXC7A100T-2CSG324C0°C to 85°CCommercial grade

Table 10: Differences between TE0710-02 variants.

Technical Specifications

Absolute Maximum Ratings

ParameterMinMaxUnitsNotes

VIN supply voltage

-0.37.0VEN6347QI, EN5311QI datasheet
3.3VIN supply voltage

-0.1

3.6 V-
HR I/O banks supply voltage (VCCO)-0.53.6 VXilinx datasheet DS181
HR I/O banks input voltage-0.4VCCO + 0.55 VXilinx datasheet DS181
Voltage on module JTAG pins

-0.5

VCCO_0 + 0.45 VVCCO_0 is 3.3V nominal
Storage temperature-55

+100

 °C-

Table 11: Absolute maximum ratings.

Recommended Operating Conditions

ParameterMinMaxUnitsNotes
VIN supply voltage2.45.5 VEN5311QI data sheet
3.3VIN supply voltage3.1353.465 V

3,3V ± 5%

HR I/O banks supply voltage (VCCO)1.143.465 V

Xilinx datasheet DS181

HR I/O banks input voltage-0.20VCCO + 0.2 V

Xilinx datasheet DS181

Voltage on JTAG pins3.1353.465 V3,3V ± 5%

Table 12: Recommended operating conditions.

Operating Temperature Ranges

Commercial grade: 0°C to +70°C.

Industrial: -40°C to +85°C.

Operating temperature range depends also on customer design and cooling solution. Please contact Trenz Electronic for options.

Please check Xilinx datasheet DS181 for complete list of absolute maximum and recommended operating ratings.

Physical Dimensions

All dimensions are shown in millimeters.

  

Figure 3: Physical dimensions of the TE0710-02 SoM.

Weight

11.5 g - Plain module.

8.8 g - Set of nuts and bolts.

Revision History

Hardware Revision History

DateRevisionNotesPCNDocumentation Link
2014-03-0702Current hardware version
TE0710-02

01First production release

Hardware revision number is printed on the PCB board together with the module model number separated by the dash.


Document Change History

DateRevisionContributorsDescription

John Hartfiel
  • Update power rail section
2017-11-10v.5John Hartfiel
  • Replace B2B connector section
2017-01-26v.4Jan Kumann
  • New block diagram.
2017-01-24

v.3

Jan Kumann
  • SC I/O pins section improved.
2017-01-01
v.2

Jan Kumann

  • TRM revision.
2015-01-23v.1

Antti Lukats, Emmanuel Vassilakis, Ali Naseri

  • Initial version.

Disclaimer