
Demo - Litex Development Enviroment

Description of the demo
Tested on
Prequesitions
Path variables
Installation of Litex
Installation of a RISC-V toolchain
Setup the path environmental variables
Generate the Litex BIOS demo

Litex is an alternative and open-source development enviroment for FPGA designs written in Python. It offers Migen, a python like Hardware Description
Language.

For every board supported there is a demo within the Litex installation.

Description of the demo
The demo for the consists of a design, describing a RISC-V processor so that it can run C code to display a TEI009 / C10LP RefKit development board
BIOS promt via () , furthermore is makes the LEDs to blink.UART 115200 / 8N1 D13 D17
The demo is non persistent and is delete by a power down or a board reset (Switch) . Also a soft reset is available (Switch) .S2 S7

Tested on
Windows 10 - Version 1909 / build 18363
Python 3.82 at least 3.6 is required
Intel Quartus Prime Lite 19.1

Prequesitions
Intel Quartus Prime Lite:
Download and install it. If necessary, add device support for Cyclone 10 LP. The device support can be installed via download of the file from Intel's
webpage and running the program Device Installer.

Python 3.6+:
Download and install it.

In the Python installation folder is the python.exe, on windows it is necessary to have a copy of the python.exe in the same folder under the name python3.
exe . Open the python folder and copy the python.exe into the same folder and rename it to python3.exe .

Litex setup-script:
The script can be sourced at the projects git web page: as part of the sources.https://github.com/enjoy-digital/litex.git

Download the source litex-master.zip archive via the green button "Clone or download" and extract it.

Diskspace, at least 1.5 GB.

RISC-V Toolcain:
This can easily be installed via the Litex setup script.

Make:
Included as part of the NIOS2 package within the Intel Quartus Lite installation.

Path variables
Path variables point the litex scripts to the necessary executables for running various tasks. They need to be present before running a script. In windows
they can be edited and stored permanently or non permanently.

This manual edits the path variable non permanently, the changes made effect only the CMD console in which they are made and will be lost by closing
the console.

Necessary editions to the path variable are described where needed. The Litex scripts needs to know the folder of the python3.exe . The necessary
change to the path variable should be conducted by the Python installation.

Installation of Litex
Make a folder for your litex-installation. It is highly recommand to use an installation-folder inside your user directory.

Copy from the litex-master.zip archive the script file litex_setup.py into the installation-directory.

Open a CMD console and browse to this directory and run the installation command for Litex:
All CMD console commands are in .python llitex_setup.py init install - italic letters

This downloades and installs Litex along the necessary Python modules into the installation directory.

Error handling:
No access to / missing files Delete files or folder in question and restart the installation
Use the console to start the setup of the package in question manually
Separate the command into and python llitex_setup.py init install python llitex_setup.py init python llitex_setup.py install

https://github.com/enjoy-digital/litex.git

Installation of a RISC-V toolchain
In the same CMD console run the command:
python litex_setup.py gcc

This downloads and extracts the toolchain (folder riscv64-unknown-elf-gcc-8.3.0-2019.08.0-x86_64-w64-mingw32).

Setup the path environmental variables
Edit the path variables via copying these commands.

Intel Quartus Prime Lite:
set PATH=%PATH%;C:\IntelFPGA_lite\19.1\quartus\bin64

RISC-V Toolcain
set PATH=%PATH%;C:\users\<your litex installtion folder>\riscv64-unknown-elf-gcc-8.3.0-2019.08.0-x86_64-w64-mingw32\bin

Make:
set PATH=%PATH%;c:\IntelFPGA_lite\19.1\nios2eds\bin\gnu\H-x86_64-mingw32\bin

Error handling:
In case of the already existing path variable leading to errors during the build, one can override the PATH variable completely. The following command
should be executed, which overrides the PATH variable temporarily and adds Python to it.
set PATH=c:\<Path to your python installation folder>
Issue the path commands above for Intel Quartus Prime Lite, RISC-V Toolcain and Make.

Generate the Litex BIOS demo
To generate the demo, navigate to the folder
C:\users\<your litex installtion folder>\litex-boards\litex_boards\targets
and execute the build command with the --build option:
python c10lprefkit.py --build

These starts the build beginning with the software compilation followed by the hardware design generation.

The build can end with an error message which is of no concern to the successful generation of the file.

The resulting files are stored inside the same folder in , the demo file is stored in soc_basesoc_c10lprefkit top.sof targets\soc_basesoc_c10lprefkit\gat
eware.

Program that file to the board and the demo runs.

Options:
To generate only the FPGA design, containing the RISC-V processor and blinking LEDs, without the software part, the Litex UART BIOS promt.
python c10lprefkit.py --no-compile-software

Generate only the software sources.
python c10lprefkit.py --no-compile-gateware

	Demo - Litex Development Enviroment

