TEMB0005 TRM

Download PDF version of this document.

Table of Contents

- Overview
 - Key Features
 - Block Diagram
 - Main Components
 - Initial Delivery State
 - Configuration Signals
- Signals, Interfaces and Pins
 - Board to Board (B2B) I/Os CRUVI B2B Connectors

 - USB2.0 Socket
 - RJ45 LAN Socket • PMod Header
 - Pin Header
 - UART
 - JTAG Interface
 - Test Points
- On-board Peripherals
 - FTDI FT2232H
 - EEPROM
 - Push Buttons
 - LEDs
 - Clock Sources
- Power and Power-On Sequence
 - Power Supply
 - Power Consumption
 - Power Distribution Dependencies
 - Power-On Sequence
 - Power Rails
- Board to Board Connectors
- **CRUVI B2B Connectors**
 - ^o Connector Mating height

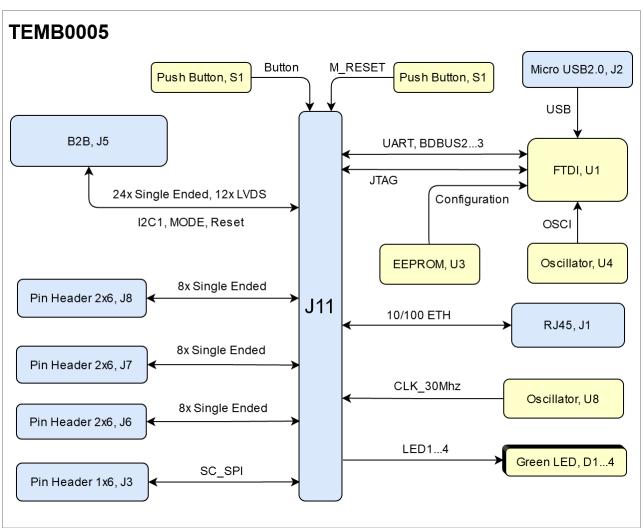
 - Current Rating
 Speed Rating
- Operating Temp Range Technical Specifications

 - Absolute Maximum Ratings
 - Recommended Operating Conditions
 - Physical Dimensions
- Currently Offered Variants ٠
- Revision History
 - Hardware Revision History
 - Document Change History
- Disclaimer
 - Data Privacy
 - Document Warranty
 - Limitation of Liability
 - Copyright Notice
 - Technology Licenses
 - Environmental Protection
 - REACH, RoHS and WEEE

Overview

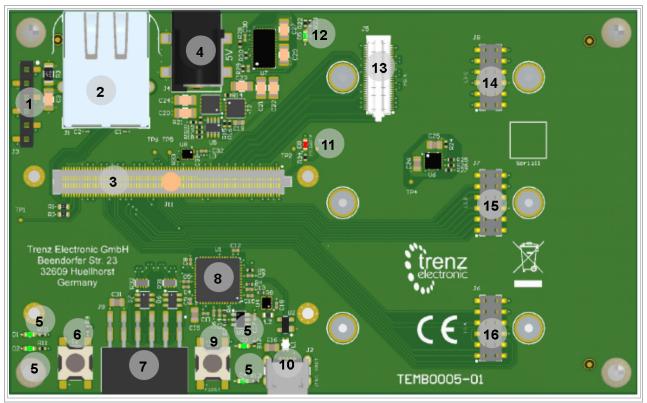
The Trenz Electronic TEMB0005 is a carrier for the module TEM00005. The carrier is equipped with a LAN socket, a FTDI JTAG/UART to USB2.0 solution, three low speed and one high speed CRUVI B2B Connectors, a PMod Connector.

Refer to http://trenz.org/temb0005-info for the current online version of this manual and other available documentation.


Key Features

- Modules ° TEM0005
- RAM/Storage ° 2KB EEPROM On Board
 - FT2232H FTDI
 - 4x User LEDs
 - 2x Push Buttons
 - ° 2x MEMS Oscillators
- Interface
 - ° 1x Samtec Razor Beam (SS5) B2B Connector
 - 1x Samtec Razor Beam (SS4) High Speed CRUVI Connector
 3x Samtec Low Speed CRUVI Connectors

 - 1x PMod SMD (2x6) Connector
 - 1x SMD Header (1x6)


 - 1x RJ45 LAN Socket
 1x Micro USB2.0 Connector
- Power ° 5V Input Power Supply
- Dimension
 - ° 115 x 70 mm
- Notes

Block Diagram

TEMB0005 block diagram

Main Components

TEMB0005 main components

- 1. SMD Header 6x1, J3
- RJ45 LAN Socket, J1
 B2B Connector, J11
- 4. Barrel Jack, J4
- 5. Green LEDs, D1...4
- 6. User Push Button, S2
- 7. PMod 2x6 SMD Host Socket, J9
- 8. FT2232H FTDI, U1

- F12232H F1DI, U1
 Reset Push Button, S1
 Micro USB2.0 Socket, J2
 Red LED (PG_DCDC), D8
 Green LED (5VIN), D5
 High Speed CRUVI Connectors, J5
 High Speed CRUVI Connectors, J6 14. Low Speed CRUVI Connectors, J8
- 15. Low Speed CRUVI Connectors, J7 16. Low Speed CRUVI Connectors, J6

Initial Delivery State

Storage device name	Content	Notes
EEPROM	Programmed	FTDI Confirguration

Initial delivery state of programmable devices on the module

Configuration Signals

Signal	B2B	Connected to	Note
M_RESET	J11- 11	Push Button, S1	Module Reset
EN_VADJ	J11-110	DCDC, U6	pull-down, input from module
SEL_VADJ	J11-108	DCDC, U6	pull-up, input from module. 'low' 1.8V, 'high' 2.5V

Reset process.

Signals, Interfaces and Pins

Board to Board (B2B) I/Os

The carrier TEMB0005 is equipped with a Samtec (SS4) B2B Connector. More information in the following table.

Designators	Interface	I/O Signal Count	Connected to	Notes
11	JTAG	4x Single Ended	FTDI, U1	
	MSIOD	24x Single Ended, 12x Differential Pairs	CRUVI B2B, J5	A05, B05 (N/P)
	MSIO/GPIO	8x Single Ended	CRUVI B2B, J6	A_X07
	MSIO	8x Single Ended	CRUVI B2B, J7	B_X07
	MSIO/GPIO	8x Single Ended	CRUVI B2B, J8	C_X07
	LEDs (2x MSIO, 2x MSIO/GPIO)	4x Single Ended	D14	LED14
	MSIO	8x Single Ended	Pmod Header, J9	
	Push Button	1x Single Ended	Push Button, S1	M_RESET
	Push Button	1x Single Ended	Push Button, S2	pull-up, User Button
	MSIO/GPIO/I2C	2x Single Ended	CRUVI B2B J6	12C
	ETH	2x Differential Pairs	RJ45 Socket, J1	
		2x Single Ended	RJ45 LEDs, J1	Yellow and Green LEDs
	UART	2x Single Ended	FTDI, U1	UART RX/TX
	FTDI I/O	2x Single Ended	FTDI, U1	BDBUS2-BDBUS3
	CLK	1x Single Ended	Oscillator, U8	30 MHz
	MSIOD	4x Single Ended	CRUVI B2B, J5	RESET, HSIO, HSO, HSI
	IO (3x MSIO, 4x MSIO/GPIO, 2x MSIO GPIO/I2C)	9x Single Ended	CRUVI B2B, J5	
	Power Signal	1x Single Ended	RED LED, D8	PG_DCDC
	SC_SPI	4x Single Ended	pin header, J3	SC_CLK, SC_SDO, SC_SDI, SC_SS
	GOLDEN	1x Single Ended	Testpoint, TP1	GOLDEN
	JTAGSEL	1x Single Ended	Testpoint, TP2	JTAGSEL

General B2B connectors information

CRUVI B2B Connectors

The TEMB0005 is equipped with three Low Speed Connectors J6...8 and a High Speed Connector J5. These connectors are provided for CRUVI extension cards. More information is provided in the B2B Connectors section.

Speed	Designators	Schematic	Connected to	Notes
Low	J6	A_X01	B2B, J11	alternative GPIO
		A_X25	B2B, J11	alternative SPI
		A_X67	B2B, J11	alternative I2C0 SDA/SCL
	J7	B_X07	B2B, J11	
	J8	C_X07	B2B, J11	alternative GPIO
High	J5	A0A5 (N/P)	B2B, J11	HS I/O
		B0B5 (N/P)	B2B, J11	HS I/O
		HSIO, HI, HO, RESET	B2B, J11	HS I/O single ended
		SMB_ALERT, SMB_SDA, SMB_SCL, MODE, REFCLK	B2B, J11	
		DI,DO,SCK,SEL	B2B, J11	alternative GPIO

CRUVI B2B connectors information

USB2.0 Socket

There is a USB2.0 Socket, J2 provided in order to use JTAG/UART via FTDI, U1.

Pin	Schematic	Connected to	Notes
ID	N.C	N.C	
D+	DL_P	FTDI, U1	Through Line Filter, L1
D-	DL_N	FTDI, U1	Through Line Filter, L1
Vbus	VBUS	Diode, U2	

USB2.0 Socket information

RJ45 LAN Socket

There is a RJ45 Ethernet LAN Socket, J1 connected to B2B, J11 via 2x channels data receive and transmit.

Pin	Schematic	Connected to	Notes
TD+	ETH1_TX_P	B2B, J11	
TD-	ETH1_TX_N	B2B, J11	
RD+	ETH1_RX_P	B2B, J11	
RD-	ETH1_RX_N	B2B, J11	
Green LED	ETH1_LED0	B2B, J11	Link/Activity indicator
Yellow LED	ETH1_LED1	B2B, J11	Speed indicator

RJ45 LAN Socket information

PMod Header

There is a PMod Header, J9 connected to the B2B, J11 and all signals are protected from invers polarity by two diodes D6, D7.

Schematic	Connected to	Notes
PM03 (N/P)	B2B, J11	
PMod Header information		

Pin Header

There is a Pin Header 6x1, J3 provided for SPI signals.

Pin	Schematic	Connected to	Notes
1	3.3V	B2B, J11	
2	GND	B2B, J11	
3	SC_SDO	B2B, J11	
4	SC_SDI	B2B, J11	
5	SC_SS	B2B, J11	
6	SC_CLK	B2B, J11	

Pin Header connections

UART

There is an UART channel provided in order to communicate with the module and signals are accessible via B2B, J11 through the FTDI, U1.

U1 Pin	Schematic	Connected to	Notes
BDBUS1	UART1_TXD	B2B, J11	FTDI receiver input
BDBUS0	UART1_RXD	B2B, J11	FTDI transmitter output

UART connection

JTAG Interface

JTAG access is provided through B2B connector J11 connected to the FTDI. For more information please refer to the FTDI section.

JTAG Signal	B2B Connector
TMS	J11-14
ТDI	J11-8
TDO	J11-10
тск	J11-12
JTAGSEL	J11-9

JTAG pins connection

Test Points

Test Point	Signal	Connected to	Notes
TP1	GOLDEN	B2B, J11	
TP2	JTAGSEL	B2B, J11	
ТРЗ	PG_DCDC	B2B, J11	Red LED, D8
TP4	VADJ	Regulator, U6	
TP5	PROBE_B	B2B, J11	
TP6	PROBE_A	B2B, J11	

Test Points Information

On-board Peripherals

Chip/Interface	Designator	Notes
FTDI	U1	
TEMB0005 TRM#LEDs	D1D6	
Push Buttons	S1-S2	
TEMB0005 TRM#EEPROM	U3	
Oscillator	U4, U8	

On board peripherals

FTDI FT2232H

The FTDI chip (U8) converts signals from USB2 to variety of standard serial and parallel interfaces. Refer to the FTDI data sheet to get information about the capacity of the FT2232H chip which is used in Multi-Protocol Synchronous Serial Engine (MPPSE) mode for JTAG.

The configuration of FTDI FT2232H chip is pre-programmed on the EEPROM U10.

Pin	Schematic	Connected to	Notes
ADBUS0	тск	FPGA Bank 1B, U6	JTAG interface
ADBUS1	TDI	FPGA Bank 1B, U6	
ADBUS2	TDO	FPGA Bank 1B, U6	
ADBUS3	TMS	FPGA Bank 1B, U6	
BDBUS0	F_UART_TX	FPGA Bank 1B, U6	UART transmitter output
BDBUS1	F_UART_RX	FPGA Bank 1B, U6	UART receiver input
BDBUS2	BDBUS2	B2B,J11	I/O
BDBUS3	BDBUS3	B2B,J11	I/O
OSCI	OSCI	Oscillator, U4	Clock 12 MHz
EECS	EECS	EEPROM, U3	EEPROM Contains FTDI configuration
EECLK	EECLK	EEPROM, U3	

DM/DP	D_N/ D_P	Micro USB, J2	USB to UART
nRESET	3.3V	3.3V	
EEDATA	EEDATA	EEPROM, U3	

FTDI chip interfaces and pins

EEPROM

There is an EEPROM IC, U3 provided for storing the FTDI (U1) configuration.

Pin	Schematic	Notes
DI/DO	EEDATA	Data
CLK	EECLK	Clock
CS	EECS	Select

I2C EEPROM interface MIOs and pins

The I2C address is as the following.

I2C Address	Designator	Notes
0x70	U3	

I2C address for EEPROM

Push Buttons

There are two Push Buttons provided on the TEMB0005 designated as S1, S2. The Push Button S2 is considered to be as user buttons and S1 is provided to reset the module on the carrier.

Designator	Schematic	Connected to	Functionality	Note
S1	M_RESET	B2B, J11	Reset	
S2	Button	BUTTON	User Button	

On-board Push Buttons

LEDs

There are 4 green LEDs provided as user LEDs.

Designator	Color	Connected to	Active Level	Note
D1D4	Green	B2B, J11	Active High	User LEDS
D5	Green	5VIN	Active High	Power Status LED
D6	Red	PG_DCDC	Active Low	from module

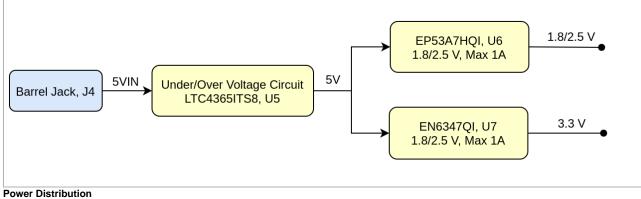
On-board LEDs

Clock Sources

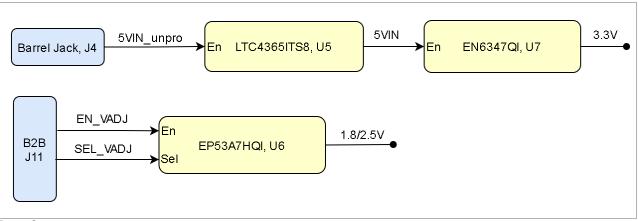
Designator	Description	Frequency	Note
U4	MEMS Oscillator	12 MHz	
U8	MEMS Oscillator	30 MHz	
Osillators			

Power and Power-On Sequence

Power Supply


Power supply with minimum current capability of 2 A for system startup is recommended.

Power Consumption


Power Input Pin	Typical Current
5VIN	TBD*
Power Consumption	

* TBD - To Be Determined

Power Distribution Dependencies

Power-On Sequence

Power Sequency

Power Rails

Power Rail Name	B2B Connector J11 Pin	CRUVI Connector J5 Pin	B2B Connector J6 Pin	B2B Connector J7 Pin	B2B Connector J8 Pin	Direction	Notes
3.3V	1, 2, 3, 4	-	10	10	10	Output	
VDAJ	22	36	-	-	-	Output	
5VIN	-	-	12	12	12	Output	

Module power rails.

Board to Board Connectors

Unable to render {include} The included page could not be found.

CRUVI B2B Connectors

CRUVI modules use on bottom side:

- TMMH-106-04-F-DV-A-M as Low Speed connectors, (12 pins, 6 per row)
- ST4-30-1.50-L-D as High Speed connectors, (60 pins, 30 per row)

CRUVI carrier use on top side:

- CLT-106-02-F-D-A-K as Low Speed connectors , (12 pins, 6 per row)
- SS4-30-3.50-L-D as High Speed connectors, (60 pins, 30 per row)

Connector Mating height

Mating height of the high speed connectors is 5mm. The low speed connectors mate correctly within a range from 4.78 mm to 5.29 mm.

Current Rating

Current rating of High Speed B2B connectors is 1.6A per pin (2 pins powered).

Current rating of Low Speed B2B connectors is 4.1A per pin (2 pins powered).

Speed Rating

There is no data available for the connectors actual used here. Data available for other stacking heights of same connectors is summarized in the following table:

Connector	Speed ratings			
ST4/SS4 single ended (4mm stacking height!)	13.5GHz / 27 Gbps			
ST4/SS4 differential (4mm stacking height!)	15.5 GHz / 31 Gbps			
TMMH/CLT single ended (4.77mm stacking height!)	5.5GHz / 11 Gbps			
Connector speed ratings				

Operating Temp Range

All connectors are specified for a temp. range of -55 $^{\circ}\text{C}$ to 125 $^{\circ}\text{C}.$

Technical Specifications

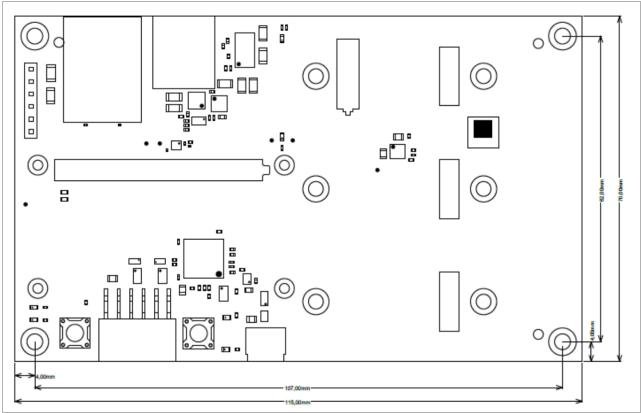
Absolute Maximum Ratings

Symbols	Description	Min	Мах	Unit
VIN	Input Supply Voltage	2.5	34	V
T_STG	Storage Temperature	-55	125	°C

PS absolute maximum ratings

Recommended Operating Conditions

Operating temperature range depends also on customer design and cooling solution. Please contact us for options.


Parameter	Min	Мах	Units	Reference Document
VIN	4.06	5.58	V	See the carrier datasheets.
T_OPT	0	70	°C	Push button datasheet.

Recommended operating conditions.

Physical Dimensions

- Module size: 115 mm × 70 mm. Please download the assembly diagram for exact numbers.
- Mating height with standard connectors: 4 mm.

PCB thickness: 1.6 mm.

Physical Dimension

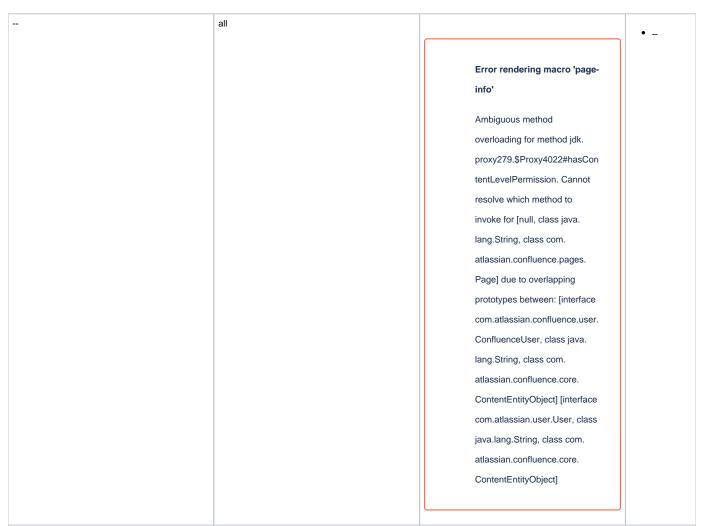
Currently Offered Variants

Trenz shop TEMB0005 overview page	
English page	German page
Trenz Electronic Shop Overview	

Revision History

Hardware Revision History

Date	Revision	Changes	Documentation Link
2020-05-20	REV01	Initial Release	
Hardware Revision History			


Hardware revision number can be found on the PCB board together with the module model number separated by the dash.

Board hardware revision number.

Document Change History

Date	Revision	Contributor	Descriptio
			 Initial Releas
Error rendering macro 'page-	Error rendering macro 'page-	Error rendering macro 'page-	
info'	info'	info'	
Ambiguous method	Ambiguous method	Ambiguous method	
overloading for method jdk.	overloading for method jdk.	overloading for method jdk.	
proxy279.\$Proxy4022#hasCon	proxy279.\$Proxy4022#hasCon	proxy279.\$Proxy4022#hasCon	
tentLevelPermission. Cannot	tentLevelPermission. Cannot	tentLevelPermission. Cannot	
resolve which method to	resolve which method to	resolve which method to	
invoke for [null, class java.	invoke for [null, class java.	invoke for [null, class java.	
lang.String, class com.	lang.String, class com.	lang.String, class com.	
atlassian.confluence.pages.	atlassian.confluence.pages.	atlassian.confluence.pages.	
Page] due to overlapping	Page] due to overlapping	Page] due to overlapping	
prototypes between: [interface	prototypes between: [interface	prototypes between: [interface	
com.atlassian.confluence.user.	com.atlassian.confluence.user.	com.atlassian.confluence.user.	
ConfluenceUser, class java.	ConfluenceUser, class java.	ConfluenceUser, class java.	
lang.String, class com.	lang.String, class com.	lang.String, class com.	
atlassian.confluence.core.	atlassian.confluence.core.	atlassian.confluence.core.	
ContentEntityObject] [interface	ContentEntityObject] [interface	ContentEntityObject] [interface	
com.atlassian.user.User,	com.atlassian.user.User,	com.atlassian.user.User, class	
class java.lang.String, class	class java.lang.String, class	java.lang.String, class com.	
com.atlassian.confluence.core.	com.atlassian.confluence.core.	atlassian.confluence.core.	
ContentEntityObject]	ContentEntityObject]	ContentEntityObject]	

Document change history.

Disclaimer

Data Privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

Document Warranty

The material contained in this document is provided "as is" and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy279.\$Proxy4022#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com. atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com. atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]