
1.
2.
3.

C++ TE_USB_FX2_SetData_InstanceDriverBuffer()

Description

Brief Description
This function instantiate the driver buffer (host computer buffer) for a single TE USB FX2 module write connection.

Longer Description
This function takes an already initialized USB device list (USBDevice previously selected by TE_USB_FX2_Open()) and a not initialized CCyBulkEndPoint
double pointer, BulkOutEP. This function selects the endpoint to use: you shall choose EP8 (0x08) (endpoints EP4(0x04) or EP2(0x02) are also
theoretically possible).

Description of internal procedure
TE_USB_FX2_SetData_InstanceDriverBuffer() function instantiates the class used by CyAPI to use Bulk EndPoint (CCyBulkEndPoint, see pages 9 to 11)
and initializes the parameters of this class instantiation.

The parameters are :

Timeout
XMODE_DIRECT (this parameter set the driver to single buffering, instead the slower double buffering)
DeviceDriverBufferSize.

The last parameter force the instantiation of the driver buffer (SW side, on the host computer) for the endpoint 0x86; this buffer has a size in byte given by
DeviceDriverBufferSize. This value is of great importance because the data throughput is strongly influenced by this parameter (see Data Transfer
Throughput Optimization).

Use of the code

Declaration

TE_USB_FX2_CYAPI int TE_USB_FX2_SetData_InstanceDriverBuffer(CCyUSBDevice *USBDeviceList, CCyBulkEndPoint
**BulkOutEP, PI_PipeNumber PipeNo,unsigned long Timeout, int BufferSize);

Function Call

This function has not been included in TE_USB_FX2_SetData() for throughput reasons; if the driver buffer instantiation were repeated at every
data reception, the data throughput would be halved.

This function shall be used only one time to instantiate the driver buffer; after instantiation, TE_USB_FX2_SetData() can be used repeatedly
without re-instantiating the driver buffer.

Currently, only endpoint 0x08 is actually implemented in Trenz Electronic USB FPGA modules, so that endpoints EP2 and EP4 cannot be
written or , more precisely, they are not even connected to the FPGA. That is why attempting to write them causes a function failure after
Timeout expires.

Your application program shall call this function like this:

TE_USB_FX2_SetData_InstanceDriverBuffer (USBDeviceList, &BulkOutEP, PipeNo, Timeout, BufferSize);

Parameters

CCyUSBDevice *USBDeviceList

CCyUSBDevice is a type defined in CyUSB.dll. Its name is misleading because it is not a class that represents a single USB device, but it rather
represents a list of USB devices. CCyUSBDevice is the list of devices served by the CyUSB.sys driver (or a derivative like TE_USB_FX2_xx.sys). This
parameter is passed by pointer. See page 7 and pages 23-49 of CyAPI.pdf (Cypress CyAPI Programmer's Reference).

CCyBulkEndPoint **BulkOutEP

This parameter is a double pointer to CCyBulkEndPoint. This parameter is used to pass the used BulkEndPoint parameter to TE_USB_FX2_SetData().
The double pointer is used because, if single pointer were used, the data modification of TE_USB_FX2_SetDataInstanceDriverBuffer() could not be
passed over to TE_USB_FX2_SetData.()

PI_PipeNumber PipeNo

This parameter is the value that identifies the endpoint used for data transfer. It is called PipeNumber because it identifies the buffer (pipe) used by the
USB FX2 microcontroller.

unsigned long Timeout

It is the integer time value in milliseconds assigned to the synchronous method XferData() of data transfer used by CyAPI.lib. TimeOut is the time that is
allowed to to the function for sending/receiving the data packet passed to the function; this Timeout shall be large enough to allow data/command
transmission/reception.Otherwise the transmission/reception will fail. See Timeout Setting.

int BufferSize

It is the dimension (in bytes) of the driver buffer (SW) used in data transmission of a the total buffer size is the single endpoints (EP8 0x08 in this case);
sum of BufferSize of every endpoint used. BufferSize has a strong influence on DataThroughput. If BufferSize is too small, DataThroughput can be 1/3-1/2
of the maximum value (from a maximum value of 24 Mbyte/s for read transactions to an actual value of 18 Mbyte/s). See 6 TE_USB_FX2_CyAPI.dll: Data
Transfer Throughput Optimization.

Return Value
int : integer type

This function returns true (ST_OK=0) if the selected BulkEndPoint exists in the firmware (it is able to instantiate the driver buffer). This function returns
false (ST_ERROR=1) otherwise.

enum ST_Status
{
 ST_OK = 0,
 ST_ERROR = 1
};

Code example

int TX_PACKET_LEN = 51200;//102400;
int packetlen = TX_PACKET_LEN;
unsigned int packets = 500;//1200;//1200;
unsigned int DeviceDriverBufferSize = 102400;
unsigned long TIMEOUT= 200;
byte * data;
byte * data_temp = NULL;
unsigned int total_cnt = 0;
unsigned int errors = 0;
data = new byte [TX_PACKET_LEN*packets]; //allocate memory
PI_PipeNumber PipeNo = PI_EP8;
//test starts
SendFPGAcommand(USBDeviceList,FX22MB_REG0_START_RX);
CCyBulkEndPoint *BulkOutEP = NULL;
TE_USB_FX2_SetData_InstanceDriverBuffer (USBDeviceList, &BulkOutEP, PipeNo, TIMEOUT, DeviceDriverBufferSize);
ElapsedTime.Start(); //StopWatch start
for (unsigned int i = 0; i < packets; i++)
{
 packetlen = TX_PACKET_LEN;
 data_temp = &data[total_cnt];
 //cout << "Address &BulkInEP" << &BulkInEP << endl;
 //cout << "Address BulkInEP" << BulkInEP << endl;
 //cout << "Address *BulkInEP" << (*BulkInEP) << endl;
 if (TE_USB_FX2_SetData(&BulkOutEP, data_temp, packetlen))
 {
 cout << "ERROR read" << endl;
 errors++;
 break;
 }
 total_cnt += packetlen;
}
//StopWatch timer stops
TheElapsedTime = ElapsedTime.Stop(false);
//test stops
SendFPGAcommand(USBDeviceList,FX22MB_REG0_STOP);

	C++ TE_USB_FX2_SetData_InstanceDriverBuffer()

