
XPS_FX2 custom IP core block

Description
XPS_FX2 is a communication core to interface Xilinx Microblaze soft processor and a popular USB High Speed microcontroller Cypress CY7C68013A
(also known as EzUSB FX2).

The XPS_FX2 supports 8bit Slave FIFO mode of operation on FX2 side. The FX2 has 4 endpoints with 2kB buffers (EP2, EP4, EP6, EP8).

The XPS_FX2 core side is driven by 48MHz IFCLK which is provided by FX2. The other side is driven by PLB clock and two separate clock signals for the
data FIFOs.

The FIFOs can be accessed with PLB bus and/or through direct high speed FIFO ports.

Pin Name FPGA Direction FX2 direction Description In the reference design case (1)

 FD[7:0] Bidirectional Bidirectional FD[0:7] are used for byte data
transfer
between FPGA and USB FX2 C.

If the custom IP blocks

XPS_FX2 (FX2 microcontroller FPGA) and
XPS_NPI_DMA (FPGA DRAM memory)

and MicroBlaze API Commands (MB Commands)

The FX2 firmware was designed to support 4 high speed slave FIFOs: 3x TX (to PC, EP2-4-6), 1x RX (from PC, EP8).

The EP2-4-6 are FPGA outputs and EP8 is FPGA input.

This asymmetry is a consequence of the core being developed for data streaming to the PC (DAQ boards,cameras…).

The PLB bus FIFO access is only possible if the PLB clock matches FIFO clock.

Maximal supported bandwidth is normally limited by

FX2 microcontroller's USB connection with host computer (see , Data throughput limit of Bulk transfer type C# API: Data Transfer
 and);Throughput Optimization C++ API: Data Transfer Throughput Optimization

FX2 microcontroller's FIFO interface with FPGA (this interface can transfer up to 48 MB/s burst rate).

https://wiki.trenz-electronic.de/pages/viewpage.action?pageId=10620639
https://wiki.trenz-electronic.de/display/TEUSB/Data+throughput+limit+of+Bulk+transfer+type
https://wiki.trenz-electronic.de/display/TEUSB/C%23+API%3A+Data+Transfer+Throughput+Optimization
https://wiki.trenz-electronic.de/display/TEUSB/C%23+API%3A+Data+Transfer+Throughput+Optimization
https://wiki.trenz-electronic.de/pages/viewpage.action?pageId=10620656

 (or derived work)FX22MB_REG0_START_RX command

https://wiki.trenz-electronic.de/display/TEUSB/FX22MB_REG0_START_RX+command

 (or derived work)FX22MB_REG0_START_TX command

https://wiki.trenz-electronic.de/display/TEUSB/FX22MB_REG0_START_TX+command

 (or derived work)FX22MB_REG0_STOP command

are used, data bytes array could be transfered between

TE USB FX2 module's DRAM (MicroBlaze's software) and
host computer's memory (host computer's software)

FD[7:0] bus pins: FPGA <-> USB FX2 microcontroller connection;

(1) Reference design case: Logic Architecture Layer = Reference Architecture Layer and reference USB FX2 C firmware used

System integration block scheme

The XPS_FX2 has 4 interfaces:

USB FX2 8-bit wide slave FIFO interface synchronous to IFCLK offering 48MB/s peak bandwidth.
Xilinx PLBv4.6 created with IPIF wizard for access to 9 32-bit registers. These registers control the whole peripheral.
Proprietary synchronous 32-bits wide FIFO_OUT bus used for data streaming directly from receive FIFO. The port is synchronous to
RX_FIFO_Clk.
Proprietary synchronous 32-bits wide FIFO_IN bus used for data streaming directly to transmit FIFO. The port is synchronous to TX_FIFO_Clk.

Peripheral internal structure block scheme

XPS_FX2 Core Design Parameters
Feature/Description Parameter Name Allowable Values Default Value VHDL Type

 System Parameters

Target FPGA family

C_FAMILY spartan3, spartan3e,
spartan3a,

spartan3adsp,

spartan3an, virtex2p,

virtex4, qvirtex4,

qrvirtex4, virtex5

virtex5 string

PLB Parameters

PLB base address C_BASEADDR Valid Address None std_logic_vector

PLB high address C_HIGHADDR Valid Address None std_logic_vector

PLB least significant address bus width C_SPLB_AWIDTH 32 32 integer

PLB data width C_SPLB_DWIDTH 32, 64, 128 32 integer

Shared bus topology C_SPLB_P2P 0 = Shared bus topology 0 integer

PLB master ID bus Width C_SPLB_MID_WIDTH log2(C_SPLB_NUM_
MASTERS) with a
minimum value of 1

1 integer

Number of PLB masters C_SPLB_NUM_MASTERS 1 - 16 1 integer

Width of the slave data bus C_SPLB_NATIVE_DWIDTH 32 32 integer

Burst support C_SPLB_SUPPORT_BURSTS 0 = No burst support 0 integer

XPS_FX2 Parameters

Size of Transmit FIFO C_TX_FIFO_KBYTE 2, 4, 8,16,32 2 integer

https://wiki.trenz-electronic.de/display/TEUSB/FX22MB_REG0_STOP+command

Size of Receive FIFO C_RX_FIFO_KBYTE 0, 2 2 integer

Using Address FIFO (1) C_USE_ADDR_FIFO 0 (not working) 0 integer

Shift transmit FIFO clock by 180 degrees (2) C_TX_FIFO_CLK_180 0, 1 0 integer

XPS_FX2 Core Design Parameters

XPS_FX2 Core I/O Signals
Name Interface I/O Initial State Description

ChipScope[0:31] - O - Debug port

USB_IFCLK - I - USB 48MHz clock

USB_SLRD - O 0 USB Data Read strobe

USB_SLWR - O 0 USB Data Write strobe

USB_FLAGA - I - USB programmable status flag (not used)

USB_FLAGB - I - USB TX FIFO full flag

USB_FLAGC - I - USB TX FIFO empty flag

USB_FLAGD - I - USB RX FIFO empty flag

USB_SLOE - O 0 Toggles FX2 IO buffer (1=read from USB)

USB_PKTEND - O 0 Commences current packet (if smaller than 512 bytes)

USB_FIFOADR[1:0] - O 0 Selects USB endpoint:

"00"=EP2,
"01"=EP4,
"10"=EP6,
"11"=EP8

USB_FD[7:0] - I/O 0 USB tristate data Bus

TX_FIFO_Clk - I - TX FIFO clock

RX_FIFO_Clk - I - RX FIFO clock

TX_FIFO_DIN[0:31] FIFO_IN I - TX FIFO input data

TX_FIFO_VLD FIFO_IN I - TX FIFO data valid strobe

TX_FIFO_RDY FIFO_IN O 0 TX FIFO is ready flag

RX_FIFO_DOUT[0:31] FIFO_OUT O zeros RX FIFO output data

RX_FIFO_VLD FIFO_OUT O 0 RX FIFO data valid strobe

RX_FIFO_RDY FIFO_OUT I - RX FIFO is ready flag

IP2INTC_Irpt - O 0 Processor interrupt

OTHERS ARE PLBv4.6 SIGNALS PLBv4.6 - - -

XPS_FX2 I/O Signal Descriptions

Writing and reading to/from FIFO_IN and FIFO_OUT ports
The point to point unidirectional buses use simple handshaking protocol.

(1) Address FIFO was designed to avoid FIFO draining before the EP ADDRESS changing. Will be fixed in further releases.

(2) Set to 1 only if the user experience 8-bit data shifting after a received packet of data. Normally set to 0.

When (slave) “ready” signal is high the port is open for writing.

A write is performed when “valid” signal goes high. The “data” should be valid when valid signal is high. If “valid” signal goes high and the ready is low then
the data are discarded.

The signals are updated on rising edge of clock.

The “valid” signal can be also continuous.

FIFO_IN port is ready when it is not under reset or being full.

If FIFO_OUT port is not ready then it will not send data ("valid" stays low and data stays in FIFO).

FIFO_OUT port latency to act upon "ready" goes low is 1 cycle.

FIFO high speed communication ports principle of operation

XPS_FX2 Core Registers
XPS_FX2 has a full access of a microprocessor to the core functionality through a 5 user 32-bit and 7 IPIF Interrupt registers attached to PLBv4.6 bus.

Base Address + Offset (hex) Register Name Access Type Default Value (hex) Description

XPS FX2 IP Core Grouping

C_BASEADDR + 00 CR R/W 0x00000000 Control Register

C_BASEADDR + 04 FTR R/W 0x00000000 FIFOs Threshold Register

C_BASEADDR + 08 SR Read 0x00000000 Status Register

C_BASEADDR + 0C FWR R/W 0x00000000 FIFO Write Register

C_BASEADDR + 10 FRR Read 0x00000000 FIFO Read Register

IPIF Interrupt Controller Core Grouping

C_BASEADDR + 200 INTR_DISR Read 0x00000000 interrupt status register

C_BASEADDR + 204 INTR_DIPR Read 0x00000000 interrupt pending register

C_BASEADDR + 208 INTR_DIER Write 0x00000000 interrupt enable register

C_BASEADDR + 218 INTR_DIIR Write 0x00000000 interrupt id (priority encoder) register

C_BASEADDR + 21C INTR_DGIER Write 0x00000000 global interrupt enable register

C_BASEADDR + 220 INTR_IPISR Read 0x00000000 ip (user logic) interrupt status register

C_BASEADDR + 228 INTR_IPIER Write 0x00000000 ip (user logic) interrupt enable register

XPS_FX2 Core Registers

Details of XPS_FX2 Core Registers

The parts of the registers (or the whole registers) with a non-capital designation (e.g. wr_fifo_rst) are usually the names of the HDL signals connected to
the described register.

Control Register (CR)

The Control Register is used to control basic peripheral functions. All the bit flags are assembled here.

The First (LSB) interrupt from user_logic is masked on the left!!

Bits Name Description Reset Value Description Reset Value Valid Value

31 tx_fifo_rst Transmit FIFO reset 0 0,1

30 rx_fifo_rst Receive FIFO reset 0 0,1

29 tx_fifo_disable When '1' TX_FIFO_RDY='0' 0 0,1

26-27 usb_fifoadr USB endpoint selection (1) 0x0 Valid Endpoints:

0 = EP2
1 = EP4
2 = EP6

0-15 pktend_timeout Packet end timeout (2) 0x0 0-32767

Control Register bits

FIFOs Threshold Register (FTR)

This register is used to setup thresholds for interrupt triggering when FIFO occupancy reaches set number of words. For RX FIFO the prog_full flag goes
high when number of words in a FIFO is higher than threshold. For TX FIFO the prog_empty flag goes high when number of words in a FIFO is lower than
threshold.

The tx_fifo_threshold can have 9, 10 or 11 bits according to size of the TX_FIFO. This register is usually accessed using 16-bit writes.

FIFOs Threshold Register (FTR) bits

Status Register (SR)

In the status register the peripheral reports of the current status. The tx_fifo_count can have 9-13 bits according to size of the TX_FIFO. This register is
usually accessed using 16-bit reads

Bits Name Description Reset Value

19-31 tx_fifo_count Transmit FIFO occupancy in words 0

18 tx_fifo_overflow Transmit FIFO overflow flag 0

17 tx_fifo_full Transmit FIFO full flag 0

16 tx_fifo_empty Transmit FIFO empty flag 1

7-15 rx_fifo_count Receive FIFO occupancy in words 0

Packet end timount and USB_PKTEND

(1) Endpoint EP8 is and is switched automatically when data arrives. To achieve maximal throughput use only one endpoint and read only prev
 ().ent TX FIFO draining TX FIFO empty should not occur

(2) Packet end timeout timer automatically asserts USB_PKTEND signal when for a programmed number of cycles TX_FIFO is empty and
.current USB EndPoint FIFO is not empty

Cycle timer is also reset when switched to EP8 – incoming data. The USB_PKTEND send current packet and enables the PC to receive packet
smaller than 512 bytes. If user setup the timer properly then the packets are automatically send when there is no more data available in the
TX_FIFO.

3 rx_fifo_prog_full Receive FIFO programmable full flag 0

2 rx_fifo_underflow Receive FIFO underflow flag 0

1 rx_fifo_full Receive FIFO full flag 0

0 rx_fifo_empty Receive FIFO empty flag 1

Status Register (SR) bits

FIFO Write Register (FWR)

Single beat write to this register puts a single word (4 bytes) to TX FIFO. For proper operation PLB clock frequency should be less or equal to
TX_FIFO_Clk.

FIFO Read Register (FRR)

Single beat read from this register pops one word (4 bytes) from RX FIFO. For proper operation PLB clock frequency should be less or equal to
RX_FIFO_Clk.

Interrupt enable/pending registers

With INTR_IPIER register the user can enable/disable peripheral interrupt sources. With INTR_IPISR the user can identify interrupt source. Writing a value
to INTR_IPISR also clears interrupt.

Writing 0x7 to INTR_DIER will enable IP interrupt sources and writing 0x80000000 to INTR_DGIER will enable global interrupt.

The image below presents a conection of user logic interrupt to INTR_IPIER and INTR_IPISR.

Interrupt enable/pending registers

Programming model

Example 1

Resetting the TX_FIFO:

1. Write 0x00000001 to CR

2. Write 0x00000000 to CR

Example 2

Resetting the RX_FIFO:

1. Write 0x00000002 to CR

2. Write 0x00000000 to CR

"Ghost" interrupts

The user must make sure that triggered interrupts will be cleared in a consinstent way (single owner); the user (host computer's
software) . Otherwise the user will trigger "ghost" interrupts which were not triggered by peripheral, but must only clear triggered interrupts
the interrupt controller itself.

By setting control register (CR) make sure that user .not override the previously set bits

Example 3

Setting the endpoint address to EP4

1. Write 0x00000010 to CR

Example 4 (if Reference Design is used): test XPS_NPI_DMA and XPS_FX2 using MB
Commands

XPS_NPI_DMA and XPS_FX2 custom IP blocks are both necessary to connect (throgh USB connection) host computer's software and TE USB FX2
module's DRAM.

The MB Commands FX22MB_REG0_START_RX, , are used for data throughput and integrity test.FX22MB_REG0_START_TX FX22MB_REG0_STOP

MB Commands require the XPS_I2C_SLAVE custom IP block and a proper (() function in running FX2 interrupt handler i2c_slave_int_handler interrupt.c
on MicroBlaze); the is called to handle the signal interrupt xps_i2c_slave_0_IP2INTC_Irpt. The () function FX2 interrupt handler i2c_slave_int_handler
actually execute the I2C delivered MB Command.

Write test should be executed before read test; otherwise the read test will fail.

https://wiki.trenz-electronic.de/display/TEUSB/FX22MB_REG0_START_RX+command
https://wiki.trenz-electronic.de/display/TEUSB/FX22MB_REG0_START_TX+command
https://wiki.trenz-electronic.de/display/TEUSB/FX22MB_REG0_STOP+command
https://github.com/Trenz-Electronic/TE063X-Reference-Designs/blob/master/reference-TE0630/sw/demo/src/interrupts.c

	XPS_FX2 custom IP core block

