TE0835 TRM Table of Contents version of this document. ### Overview Overviewy Features Block Diagram The Trenz Electronic CE0835 Rais extended-grade module based on Xilinx Zynq UltraScale+ RFSoC. The module is equipped with 4x 8Gb DDR4 SDRAM Memory, 2x 512Mb SPI Flash Memory, USB2.0, Ethernet Transceiver and 2x Samtec Razor Beam Borard to Board (B2B) Connectors. The system controller CF125 and (B2B) Loss MachXO2. The Zynq Ultra Scale RESC ramily integrates key subsystems for multiband, multi-mode cellular radios and cable infrastructure (DOCSIS) into an SoC platform that contains a feature-rich 64-bitquad-core Arm Cortex-A53 and dial-core Arm Cortex-R5 based processing system. On-board Peripherals Refer to http://trollad.spl.flash.Memory the current online version of this manual and other available documentation. USB2.0 - Ethernet - EEPROM - LEDs # Key Features - Programmable Clock Generator - PcScc/linkGAower-On Sequence - PoPeeokagepFyFVE1156, FSVE1156 - Ффехісфордіці25рt/Zlul27, ZU28, ZU43, ZU47, ZU48* - PolimarinDestDRution Dependencies - PoSpeedn-Sedµlen2e-L2 - Polvemperature: E, I* - RAM/Starageoltages - Board to Both & Gbr DBR4rs Technical Spe5ifi2MboSPI Flash - Abzolete Meringm Ratings - On Boardommended Operating Conditions Physical Wagney 22 CPLD Currents Office Wagney 22 CPLD - Currently Off regravitable Clock Generator Revision-Higher Control Transceiver official Environment Higher Higher Control official Revision Control official Revision Control official Revision Control Disclaiment Co - Disclaimer 4x User LEDs - Interfaceta Privacy - ் மிறு இது இது இது Beam ST5 (2x80 pol) Board to Board Connectors Power Limitation of Liability - Power annual of Liability Cost risbut Stippiny Voltage Dimension nology Licenses Crypt Regental Protection Note REACH, RoHS and WEEE - $^{\circ}\,\,$ * Different packages, speed and temperature range are available on assembly options ### **Block Diagram** TE0835 block diagram ## **Main Components** **TE0835** main components - 1. Xilinx UltraScale+ RFSoC, U1 - 2. 8Gb DDR4 SDRAM, U2,U3,U5,U9 - Voltage Regulators, U4,U6,U7 User Red LEDs, D2...5 Error/Status Red LEDs, D6...7 - 6. Programmable Glock Generator, U15 - Lattice MachXO2 CPLD, U31 Dual SPI Flash, U24-U25 - 9. USB2.0 Transceiver, U11 - 10. Pin Header 3x1, J3 (not Soldered) - 11. Green LED, D1 - 12. Gigabit Ethernet Transceiver, U20 - 13. EEPROM, U23 - 14. B2B Connectors, J1 15. B2B Connectors, J2 ## **Initial Delivery State** | Storage device name | Content | Notes | |------------------------------|----------------|-------| | 2x SPI Flash | Not Programmed | | | System Controller CPLD | Programmed | | | EEPROM | Not Programmed | | | 4x DDR4 SDRAM | Not Programmed | | | Programmable Clock Generator | Not Programmed | | ## **Configuration Signals** Configuration must be set through CPLD,U31 by setting MODE0...3 signals. | MODE[3:0] | Boot Mode | Note | |-----------|----------------|--------------------| | 0000 | PS_JTAG | Refer to CPLD Page | | 0001 | Quad SPI Flash | Refer to CPLD Page | | 0101 | SD Card | Refer to CPLD Page | #### Boot process. The reset pin is active low. | Signal | B2B | I/O | Note | |--------|-------|-------|------------------------| | RESETN | J1-36 | Input | Pulled up to 3.3V_CPLD | Reset process. ## Signals, Interfaces and Pins ## Board to Board (B2B) I/Os FPGA bank number and number of I/O signals connected to the B2B connector: | FPGA Bank | B2B Connector | Number of I/Os | Voltage Level | Notes | |-----------|---------------|--|---------------|------------------------------| | Bank 500 | J1 | 12x Single Ended | 1.8V | MIO1425 | | Bank 501 | J1 | 20x Single Ended | 1.8V | MIO2651 | | Bank 505 | J1 | 18x Single Ended,
9x Differential pairs | 0.85V | EXT_CLKIN_PSMG
T, RX/TX03 | | Bank 128 | J1 | 2x Differnetial CLK
Input,
8x Differential
Transceiver | | B128_CLK, RX
/TX03 | | Bank 129 | J1 | 2x Differnetial CLK
Input
8x Differential
Transceiver | | B129_CLK, RX
/TX03 | | Bank 65 | J2 | 24x Single Ended,
12x Differential pairs | 1.8V | HP Bank | | Bank 88 | J2 | 16x Single Ended,
8x Differential pairs | 3.3V | HD Bank | | ADC | J2 | 16x Single Ended,
8x Differential pairs
4x Differential Clocks | Variable | | | DAC | J2 | 16x Single Ended,
8x Differential pairs | Variable | | |-----|----|--|----------|--| | | | 3x Differential Clocks | | | General PL I/O to B2B connectors information ### **JTAG Interface** JTAG access to the Xilinx UltraScale+ MPSoC is through B2B connector JM1. JTAG signals routed directly through the CPLD to FPGA. Access between CPLD and FPGA can be multiplexed via JTAGEN (logical one for CPLD, logical zero for FPGA) on B2B. When the CPLD_JTAGEN is 0 or off, it provides FPGA access and when it is 1 or ON, it provides CPLD access. | JTAG Signal | B2B Connector | |-------------|---------------| | JTAG_TMS | J1-24 | | JTAG_TDI | J1-20 | | JTAG_TDO | J1-18 | | JTAG_TCK | J1-22 | JTAG pins connection ### **MIO Pins** | MIO Pin | Connected to | B2B | Notes | |---------|--------------------|-----|------------------| | MIO012 | SPI FLash, U24-U25 | - | Dual SPI FLash | | MIO13 | LED Green, D1 | - | 3.3V_CPLD | | MIO1425 | FPGA Bank 500,U1 | J1 | PSMIO | | MIO2627 | FPGA Bank 501,U1 | J1 | PSMIO | | MIO2829 | CPLD, U31 | - | UART_TX, UART_RX | | MIO3031 | FPGA Bank 501, U1 | J1 | PSMIO | | MIO3233 | EEPROM,U23 | - | I2C_SCL, I2C_SDA | | MIO3435 | FPGA Bank 501,U1 | J1 | PSMIO | | MIO36 | Gigabit ETH, U20 | - | ETH_RST | | MIO37 | USB2.0, U11 | - | USB_RST | | MIO3851 | FPGA Bank 501, U1 | J1 | PSMIO | | MIO5262 | USB2.0, U11 | - | USB | | MIO6377 | Gigabit ETH, U20 | - | ETH | MIOs pins ## **Test Points** | Test Point | Signal | Connected to | Notes | |------------|--------|--------------|-------| |------------|--------|--------------|-------| | TP1 | CLKOUT | Voltage Regulator, U7 | | |--------|------------------|-----------------------------------|--| | TP2 | PLL_RSTN | Programmable Clock Generator, U15 | | | TP4 | CPLD_JTAGEN | B2B, J1 | | | | | CPLD, U31 | | | TP5 | JTAG_TDO | B2B, J1 | | | | | CPLD, U31 | | | TP6 | JTAG_TDI | B2B, J1 | | | | | CPLD, U31 | | | TP7 | JTAG_TCK | B2B, J1 | | | | | CPLD, U31 | | | TP8 | JTAG_TMS | B2B, J1 | | | | | CPLD, U31 | | | TP9 | GND | GND | | | TP1011 | IO_L1P_AD15P_88, | FPGA Bank 88, U1 | | | | O_L4N_AD12N_88 | | | | TP12 | VIN | B2B, J1 | | | TP1314 | GND | GND | | | TP1516 | MIO32-MIO33 | EEPROM,U23 | | | | | FPGA Bank 501, U1 | | | TP17 | GND | GND | | | TP18 | ADC_AVCC | LDO Voltage Regulator, U8 | | | TP19 | ADC_AVCCAUX | LDO Voltage Regulator, U10 | | | TP20 | 3.3V_CPLD | CPLD, U31 | | | | | B2B, J1 | | | T21 | CPLD_JT AGEN | B2B, J1 | | | | | CPLD, U31 | | Test Points Information # On-board Peripherals | Chip/Interface | Designator | Notes | |------------------------------|----------------|-------| | QSPI Flash | U24, U25 | | | DDR4 SDRAM | U2, U3, U5, U9 | | | CPLD | U31 | | | USB2.0 | U11 | | | Gigabit Ethernet | U20 | | | Programmable Clock Generator | U15 | | | EEPROM | U22 | | |-------------|---------------|--| | Oscillators | U14, U21, U12 | | | LEDs | D07 | | On board peripherals ## **Quad SPI Flash Memory** The TE0835 is a Dual SPI Flash module equipped with two SPI Flash U24, U25 connecfted to PSMIO FPGA bank 500. | MIO Pin | Schematic | U24 Pin | U25 Pin | Notes | |---------|-----------|---------|---------|-------| | MIO0 | MIO0_QSPI | CLK | - | | | MIO1 | MIO1_QSPI | DO | - | | | MIO2 | MIO2_QSPI | nWP | - | | | МЮЗ | MIO3_QSPI | nHOLD | - | | | MIO4 | MIO4_QSPI | DI | - | | | MIO5 | MIO5_QSPI | nCS | - | | | MIO7 | MIO5_QSPI | - | nCS | | | MIO8 | MIO5_QSPI | - | DI | | | MIO9 | MIO5_QSPI | - | DO | | | MIO10 | MIO5_QSPI | - | nWP | | | MIO11 | MIO5_QSPI | - | nHOLD | | | MIO12 | MIO5_QSPI | - | CLK | | Quad SPI interface MIOs and pins ## **System Controller CPLD** The System Controller CPLD (U31) is provided by Lattice Semiconductor LCMXO2-460HC. The CPLD provides JTAG routing, boot mode, User IOs, LEDs, firmware and power management access. For more information please refer to the TE0835 CPLD page. | Schematic/Pin | Connected to | Description | Note | |---------------|-------------------|------------------------------|-----------| | MODE03 | FPGA Bank 503, U1 | Boot Mode | | | POR_B | FPGA Bank 503, U1 | Programming Status | Pulled up | | PORG_B | FPGA Bank 503, U1 | Programming Status | Pulled up | | INIT_B | FPGA Bank 503, U1 | Configuration initialization | Pulled up | | DONE | FPGA Bank 503, U1 | Configuration Done Status | Pulled up | | F_TCK | FPGA Bank 503, U1 | FPGA JTAG | | | F_TDI | FPGA Bank 503, U1 | FPGA JTAG | | | F_TMS | FPGA Bank 503, U1 | FPGA JTAG | | | F_TDO | FPGA Bank 503, U1 | FPGA JTAG | | | JTAG_TDO | B2B, J1 | CPLD JTAG | | | JTAG TMS | B2B, J1 | CPLD JTAG | | |-------------|-----------------------------------|-------------------------------|-------------| | JIAO_IIVIO | B2B, 31 | CI ED STAG | | | JTAG_TDI | B2B, J1 | CPLD JTAG | | | JTAG_TCK | B2B, J1 | CPLD JTAG | | | CPLD_JTAGEN | B2B, J1 | CPLD JTAG Enable | | | CPLDIO03 | B2B, J1 | CPLD IOs | | | RESETN | B2B, J1 | Reset | | | MIO13 | LED Green, D1 | 3.3V_CPLD | | | MIO28 | FPGA Bank 501, U1 | UART_TX | | | MIO29 | FPGA Bank 501, U1 | UART_RX | | | FPGA_IO01 | FPGA Bank 65, U1 | IOs | | | EN_PS_PL | Voltage Regulators, U6, U7, U29 | PS/PL Enable Signals | Pulled Down | | EN_GR1 | Voltage Regulators, U19, U27, U28 | MGTAVTT, PSLL | Pulled Down | | EN_GR2 | Voltage Regulators, U38, U18, U38 | PS_MGTRAVTT, 3.3, DDR2.
5V | Pulled Down | | EN_RF_ADC | Voltage Regulators, U8 | Enable ADC | Pulled Down | | PG_RF_DAC | Voltage Regulators, U17 | ADC Power Good Status | Pulled Down | | PG_PS_PL | Voltage Regulators, U6, U7, U29 | PS/PL Power Good Status | Pulled Down | | EN_RF_DAC | Voltage Regulators, U13 | Enable DAC | Pulled Down | | PG_RF_DAC | Voltage Regulators, U10 | DAC Power Good Status | Pulled Down | USB2.0 interface connections and pins ### **USB2.0** The TE0835 is equipped with a USB2.0, U11. | U11 Pin | Schematic | Connected to | Notes | |---------|-------------|-------------------|-------| | RESETB | USB0_RST | FPGA Bank 501, U1 | | | VDDIO | 1.8V | 1.8V | | | CPEN | USB0_CPE | B2B, J1 | | | VBUS | USB0_VBUS | B2B, J1 | | | ID | USB0_ID | B2B, J1 | | | DP | USB0_D_P | B2B, J1 | | | DM | USB0_D_N | B2B, J1 | | | REFCLK | USB_CLK | Oschillator, U12 | | | STP | USB0_STP | FPGA Bank 502, U1 | | | NXT | USB0_NXT | FPGA Bank 502, U1 | | | DIR | USB0_DIR | FPGA Bank 502, U1 | | | CLKOUT | USB_CLK | Oschillator, U12 | | | DATA07 | USB0_DATA08 | FPGA Bank 502, U1 | | USB2.0 interface connections and pins ## **Ethernet** The module TE0835 is equipped with a Gigabit Ethernet Transceiver, U20. | U20 Pin | Signal Name | Connected to | Signal
Description | Note | |---------|-------------|-------------------|--|------| | MDIO | ETH_MDIO | FPGA Bank 502, U1 | Data Management | | | MDC | ETH_MDC | FPGA Bank 502, U1 | Data Management
clock reference for
the serial interface | | | TX_CLK | ETH_TXCK | FPGA Bank 502, U1 | Transmit Clock | | | TX_CTRL | ETH_TXCTL | FPGA Bank 502, U1 | Transmit Control | | | TXD03 | ETH_TXD03 | FPGA Bank 502, U1 | Transmit Data | | | RX_CLK | ETH_RXCK | FPGA Bank 502, U1 | Receive Clock | | | RX_CTRL | ETH_RXCTL | FPGA Bank 502, U1 | Receive Control | | | RXD03 | ETH_RXD03 | FPGA Bank 502, U1 | Receive Data | | | RESETn | ETH_RST | FPGA Bank 501, U1 | Ethernet reset,
Active low. | | | XTAL_IN | ETH_XTAL_IN | Oscillator, U21 | Reference Clock | | | MDI03 | PHY_MDI03 | B2B, J1 | Media Dependent
Interface 03 | | | LED01 | PHY_LED01 | B2B, J1 | LED output | | | LED/INT | PHY_LED2 | B2B, J1 | LED interrupt | | Ethernet connections ### **EEPROM** The module TE0835 has an EEPROM IC (U23) connected to PSMIO FPGA Bank 501. | MIO Pin | Schematic | U23 Pin | Notes | |---------|----------------|---------|-------| | MIO32 | MIO32_I2C1_SCL | SCL | | | MIO33 | MIO33_I2C1_SDA | SDA | | #### I2C EEPROM interface MIOs and pins | MIO Pin | I2C Address | Designator | Notes | |---------|-------------|------------|-------| | MIO3233 | 0xA1 | U23 | | I2C address for EEPROM ### **LEDs** | Designa | toiColo | r Connecte | ed Kactive Le | veNote | |---------|---------|---------------|----------------|-----------| | D1 | Green | MIO13 | Active
High | 3.3V CPLD | | D25 | Red | DBG_LE
D03 | Active
Low | User LED | | D6 | Red | ERR_OUT | Active
High | | |----|-----|----------------|----------------|--| | D7 | Red | ERR_ST
ATUS | Active
High | | On-board LEDs ### **DDR4 SDRAM** The TE0835 SoM has 4x 1 Gigabyte volatile DDR4 SDRAM IC for storing user application code and data. Part number: K4A8G165WB Supply voltage: 1.2 V Speed: 2400 Mbps Temperature: -40 ~ 95 °C ### **Clock Sources** | Designator | Description | Frequency | Note | |------------|------------------------------|-----------|------| | U14, U21 | MEMS Oscillator | 25MHz | | | U22 | MEMS Oscillator | 33.33 MHz | | | Y1 | Crystal Oscillator | 54 MHz | | | U12 | MEMS Oscillator | 52MHz | | | U15 | Programmable Clock Generator | Variable | | #### Oscillators ## **Programmable Clock Generator** There is a Silicon Labs I^2C programmable clock generator on-board (U10) in order to generate reference clocks for the module. Programming can be done using I^2C via PIN header J3. The I^2C Address is 0x69. | U15
Pin | Signal | Connected | d toDirection | Note | |------------|--------------------|------------------------|---------------|--------------------| | IN0 | IN0_P | Oscillator,
U14 | Input | | | IN1 | - | N.C | - | | | IN2 | EXT_CL
K_IN1 | B2B,J2 | Input | | | IN3 | - | N.C | | | | nRST | PLL_RS
TN | FPGA
Bank 65,
U1 | Input | | | SCL | MIO32_I
2C1_SCL | Pin
Header, J3 | Input | 12C | | SDA | MIO33_I
2C1_SDA | Pin
Header, J3 | Input | 12C | | OUT0 | CLKC | B2B,J2 | Output | Differential Clock | | OUT1 | CLKB | B2B,J2 | Output | Differential Clock | | OUT2 | CLKA | B2B,J2 | Output | Differential Clock | | OUT3 | CLKD | B2B,J2 | Output | Differential Clock | |-------|------------------|-------------------------|--------|--------------------| | OUT4 | CLKE | B2B,J2 | Output | Differential Clock | | OUT5 | CLKF | B2B,J2 | Output | Differential Clock | | OUT6 | B128_C
LK0 | FPGA
Bank 128,
U1 | Output | | | OUT7 | B129_C
LK0 | FPGA
Bank 129,
U1 | Output | | | OUT8 | CLK8 | FPGA
Bank 65,
U1 | Output | | | OUT9 | PSMGT
_100MHZ | FPGA
Bank 505,
U1 | Output | | | OUT9A | CLK0A_
100MHZ | B2B, J1 | Output | | **Programmable Clock Generator Inputs and Outputs** # Power and Power-On Sequence ## **Power Supply** Power supply with minimum current capability of 2.5A for system startup is recommended. ## **Power Consumption** | Power Input Pin | Typical Current | |-----------------|-----------------| | VIN (5V) | TBD* | Power Consumption ## **Power Distribution Dependencies** ^{*} TBD - To Be Determined **Power-On Sequence** #### Power Sequency ### **Power Rails** | Power Rail Name | B2B J1 Pin | B2B J2 Pin | Direction | Notes | |-----------------|---------------|------------|-----------|-------| | VIN | 1,2,3,4,5,6,8 | - | Input | | | PSBATT | 14 | - | Input | | | 3.3V_CPLD | 16 | - | Output | | Module power rails. ## **Bank Voltages** | Bank | Schematic Name | Voltage | Notes | |-------------------|----------------|---------|-------| | Bank 65 HP | VCCO_65 | 1.8V | | | Bank 503 PSCONFIG | VCCO_PSIO3_503 | 1.8V | | | Bank 88 HD | VCCO_88 | 3.3V | | | Bank 128 GTY | MGTAVCC | 0.9V | | | Bank 129 GTY | MGTAVCC | 0.9V | | | Bank 500 PSMIO | VCCO_PSIO0_500 | 1.8V | | | Bank 501 PSMIO | VCCO_PSIO0_501 | 1.8V | | | Bank 502 | VCCO_PSIO0_502 | 1.8V | | | Bank 504 PSDDR | VCCO_PSDDR_504 | 1.2V | | | Bank 505 PSGTR | PS_MGTRAVCC | 0.85V | | Zynq SoC bank voltages. ### **Board to Board Connectors** Unable to render {include} The included page could not be found. ## **Technical Specifications** ## **Absolute Maximum Ratings** | Symbols | Description | Min | Max | Unit | |---------|----------------------|-----|-----|------| | VIN | Input Supply Voltage | 0 | 5 | V | | T_STG | Storage Temperature | -40 | 95 | °C | PS absolute maximum ratings # **Recommended Operating Conditions** Operating temperature range depends also on customer design and cooling solution. Please contact us for options. | Parameter | Min | Max | Units | Reference
Document | |-----------|-----|-----|-------|-------------------------| | VIN | 4.5 | 5.5 | V | See Schematic | | T_OPR | -40 | 85 | °C | See USB2.0
Datasheet | Recommended operating conditions. ## **Physical Dimensions** - Module size: 90 mm x 65 mm. Please download the assembly diagram for exact numbers. Mating height with standard connectors: 7 mm. PCB thickness: 1.65 mm. Physical Dimension # **Currently Offered Variants** | Trenz shop TE0835 overview page | | |---------------------------------|-------------| | English page | German page | Trenz Electronic Shop Overview # **Revision History** ## **Hardware Revision History** | Date | Revision | Changes | Documentation Link | |------------|----------|---|--------------------| | 2019-11-05 | REV01 | Initial Release | REV01 | | 2020-06-17 | REV02 | 1. Added a VRP resistor on bank 65; | REV02 | | | | 2. LDO U33 is changed on ADP7102ACPZ; | | | | | 3. Signal FPGA IO0 is connected on AE18 pin of FPGA; | | | | | Signal DBG_LED3 is
connected on AD18 pin of
FPGA; | | | | | 5. Signal MIO13_25 connected to J1 pin 33 instead MIO25. | | | | | 6. Resistor R84 is removed; | | | | | 7. LED D1 moved on edge of PCB; | | | | | 8. Added THT testpoints
J4 on CPLD_JTAGEN,
R76 was removed; | | | | | 9. Signals B49_XX_X are renamed in B88_XX_X; | | | | | 10. C241 is changed on 1nF; | | | | | 11. Length of CLK signals on RFADC and RFDAC are adjusted; | | | | | 12. Wrong connection on U8 is fixed (PCB); | | | | | 13. Wrong connection PGOOD1 pin of U7 is fixed; | | | | | 14. R17 is changed from 35,5K to 33K for VCC_PL_PS correction. | | **Hardware Revision History** Board hardware revision number. ## **Document Change History** | Date | Revision | Contributor | Description | |------------|------------|-------------|-----------------| | | | | Bugfix Overview | | | | | Picture | | Error | Error | Error | | | renderi | renderi | renderi | | | ng | ng | ng | | | macro | macro | macro | | | 'page- | 'page- | 'page- | | | info' | info' | info' | | | Ambiguo | Ambiguo | Ambiguo | | | us | us | us | | | method | method | method | | | overload | overload | overload | | | ing for | ing for | ing for | | | method | method | method | | | jdk. | jdk. | jdk. | | | proxy27 | proxy27 | proxy27 | | | 9.\$Proxy | 9.\$Proxy | 9.\$Proxy | | | 4022#ha | 4022#ha | 4022#ha | | | sConten | sConten | sConten | | | tLevelPe | tLevelPe | tLevelPe | | | rmission | rmission | rmission | | | | | | | | Cannot | Cannot | Cannot | | | resolve | resolve | resolve | | | which | which | which | | | method | method | method | | | to | to | to | | | invoke | invoke | invoke | | | for [null, | for [null, | for [null, | | | class | class | class | | | java. | java. | java. | | | lang. | lang. | lang. | | | String, | String, | String, | | | class | class | class | | | com. | com. | com. | | | atlassian | atlassian | atlassian | | | | | | | | | | | | | confluen | confluen | confluen | |-----------|-----------|-----------| | ce. | ce. | ce. | | pages. | pages. | pages. | | Page] | Page] | Page] | | due to | due to | due to | | overlapp | overlapp | overlapp | | ing | ing | ing | | prototyp | prototyp | prototyp | | es | es | es | | between | between | between | | : | : | : | | [interfac | [interfac | [interfac | | e com. | e com. | e com. | | atlassian | atlassian | atlassian | | | | | | confluen | confluen | confluen | | ce.user. | ce.user. | ce.user. | | Conflue | Conflue | Conflue | | nceUser | nceUser | nceUser | | , class | , class | , class | | java. | java. | java. | | lang. | lang. | lang. | | String, | String, | String, | | class | class | class | | com. | com. | com. | | atlassian | atlassian | atlassian | | | | | | confluen | confluen | confluen | | ce.core. | ce.core. | ce.core. | | Content | Content | Content | | EntityOb | EntityOb | EntityOb | | ject] | ject] | ject] | | [interfac | [interfac | [interfac | | e com. | e com. | e com. | | atlassian | atlassian | atlassian | | .user. | .user. | .user. | | User, | User, | User, | | | class | class | | class | 111 | | | java. | java. | java. | | lang. | lang. | lang. | | |------------|-----------|---------------------------|--| | String, | String, | String, | | | class | class | class | | | com. | com. | com. | | | atlassian | atlassian | atlassian | | | | | | | | | | | | | confluen | confluen | confluen | | | ce.core. | ce.core. | ce.core. | | | Content | Content | Content | | | EntityOb | EntityOb | EntityOb | | | ject] | ject] | ject] | | | | | | | | 2024 42 24 | V.E0 | John Hortfiel | | | 2021-12-21 | v.58 | John Hartfiel | Bugfix B2B section Replace GTH with GTY | | 2021-05-28 | v.55 | John Hartfiel | Style update Bugfix PDF Link Key features update | | 2020-11-23 | v.51 | Pedram Babakhani | Update to REV02 | | | all | | • | | | | | | | | | Error | | | | | renderi | | | | | ng | | | | | macro | | | | | 'page- | | | | | | | | | | info' | | | | | Ambiguo | | | | | us | | | | | method | | | | | overload | | | | | ing for | | | | | | | | | | method | | | | | method | | | | | method
jdk. | | | | | method
jdk.
proxy27 | | | | | method
jdk. | | sConten tLevelPe rmission Cannot resolve which method to invoke for [null, class java. lang. String, class com. atlassian confluen ce. pages. Page] due to overlapp ing prototyp es between [interfac e com. atlassian confluen ce.user. Conflue nceUser , class java. lang. String, class com. atlassian confluen ce.core. Content EntityOb ject] [interfac e com. atlassian .user. User, class java. lang. String, class com. atlassian confluen ce.core. Content EntityOb ject] Document change history. ## Disclaimer ## **Data Privacy** $\label{lem:protection} Please also note our data protection declaration at $https://www.trenz-electronic.de/en/Data-protection-Privacy$ ### **Document Warranty** The material contained in this document is provided "as is" and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. ### **Limitation of Liability** In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof. ### **Copyright Notice** No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic. ## **Technology Licenses** The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license. #### **Environmental Protection** To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment. ### REACH, RoHS and WEEE #### **REACH** Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA). #### RoHS Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant. #### WEEE Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment. Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676. #### Error rendering macro 'page-info' Ambiguous method overloading for method jdk. proxy279.\$Proxy4022#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user. ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core. ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]