TE0821 TRM #### Download PDF version of this document. #### **Table of Contents** | _ | $\overline{}$ | | | | | |---|---------------|----|-----|----|---| | • | Uλ | /e | rvi | e١ | N | - Key Features - Block Diagram - Main Components - Initial Delivery State - Configuration Signals #### Signals, Interfaces and Pins - O Board to Board (B2B) I/Os - JTAG Interface - o MGT Lanes - Gigabit Ethernet - System Controller CPLD - USB Interface - o I2C Interface - o MIO Pins #### Test Points On-board Peripherals - Quad SPI Flash Memory - EEPROM - LEDs - O DDR4 SDRAM - System Controller CPLD - GigaBit Ethernet - USB2.0 Transceiver - o eMMC Flash Memory - O Clock Sources - Programmable Clock Generator #### Power and Power-On Sequence - Power Supply - Power Consumption - Power Distribution Dependencies - O Power-On Sequence - Power Rails - Bank Voltages #### Board to Board Connectors - Connector Mating height - Connector Speed Ratings - Current Rating Connector Mechanical Ratings - Manufacturer Documentation - Technical Specifications - Absolute Maximum Ratings Recommended Operating Conditions - Physical Dimensions - Currently Offered Variants - Revision History - Hardware Revision History - Document Change History #### • Disclaimer - Data Privacy - Document Warranty - Limitation of LiabilityCopyright Notice - Technology Licenses - Environmental Protection - REACH, RoHS and WEEE ### Overview The Trenz Electronic TE0821 is a powerful 4 x 5 cm MPSoC module integrated with a Xilinx Zynq UltraScale+ MPSoC. In addition, the module is equipped with 2x 1 GB DDR4 SDRAM chip, 4Gb up to 128 Gb eMMC chip, 2x 64 MB flash memory for configuration and data storage, as well as powerful switching power supplies for all required voltages. The module is equipped with a Lattice Mach XO2 CPLD for system controlling. 3x Robust high-speed connectors provide a large number of inputs and outputs. The highly integrated modules are smaller than a credit card and are offered in several variants at an affordable price-performance ratio. Modules with a 4 x 5 cm form factor are completely mechanically and largely electrically compatible with each other. All components cover at least the industrial temperature range. The temperature range in which the module can be used depends on the customer design and the selected cooling. Please contact us for special solutions. Refer to http://trenz.org/te0821-info for the current online version of this manual and other available documentation. ### **Key Features** - SoC/FPGA - o Package: SFVC784 - O Device: ZU2 ...ZU5, * - Engine: EG, CG, EV, * - Speed: -1, -1L, -2, -2L, 3, *, ** - O Temperature: I, E, *, * - RAM/Storage - ° 2x DDR4 SDRAM, - Data Width: 16 Bit - Size: 8 Gb, * - Speed: 2400 Mbps, *** - o 2x QSPI boot Flash in dual parallel mode - Data Width: 8 Bit - Size: 512 Mb Gb, * - o 1x e.MMC Memory - Data Width: 16 Bit - Size: 8 Gb, * - MAC address serial EEPROM - On Board - Lattice MachXO2 CPLD - o Programmable Clock Generator - Hi-speed USB2 ULPI Transceiver - o 4x LEDS - Interface - o 1 Gbps RGMII Ethernet interface - O Hi-speed USB2 ULPI transceiver with full OTG support - Graphic Processor Mali-400 MP2, * - ° 156 x High Performance (HP) und 96 x High Density PL I/Os - 4 x serial PS GTR transceivers - PCI Express interface - SATA 3.1 interface - DisplayPort interface with video resolution up to 4k x 2k - 2x USB 3.0 specification compliant interface implementing a 5 Gbit/s line rate - Power - All power regulators on board - Dimension - o 40 x 50 mm - Note - $^{\circ}~^{\star}$ depends on assembly version - ** also non low power assembly options possible - *** depends on used U+ Zynq and DDR4 combination - Rugged for shock and high vibration ### **Block Diagram** #### TE0821 block diagram ### **Main Components** **TE0821 main components** - 1. Xilinx ZYNQ UltraScale+ MPSoC, U1 - 2. Red LED (ERR_OUT), D3 - 3. Green LED (ERR_STATUS), D4 - 4. Red LED (DONE), D1 - **5.** 10/100/1000 Mbps Energy Efficient Ethernet Transceiver, U8 - 6. 8Gb DDR4, U2-U3 - 7. 512 Mbit QSPI flash memory, U7-U17 - 8. Green User LED, D2 - 9. B2B connector Samtec Razor Beam, JM1 - 10. Programmable clock generator, U10 - 11. USB2.0 Transceiver, U18 - 12. B2B connector Samtec Razor Beam, JM3 - 13. B2B connector Samtec Razor Beam, JM2 - 14. 8 GByte eMMC memory, U6 - 15. Lattice Semiconductor MachXO2 System Controller CPLD, U21 Additional assembly options are available for cost or performance optimization upon request. ### **Initial Delivery State** | Storage device name | Content | Notes | |------------------------------|----------------|-------| | Dual QSPI Flash Memory | Not programmed | | | eMMC Memory | Not programmed | | | DDR4 SDRAM | Not programmed | | | Programmable Clock Generator | Not programmed | | | CPLD (LCMXO2-256HC) | Programmed | TE0821 CPLD | |---------------------|------------|-------------| |---------------------|------------|-------------| Initial delivery state of programmable devices on the module # **Configuration Signals** Two different firmware versions are available, one with the QSPI boot option and other with the SD Card boot option. | MODE Pin | Boot Mode | |----------|-----------| | High | QSPI* | | Low | SD Card* | #### Boot process. ^{*}changable also with other CPLD Firmware: TE0821 CPLD. | Signal | B2B | I/O | Note | |--------|--------|-------|-----------------| | EN | JM1-28 | Input | CPLD Enable Pin | Reset process. # Signals, Interfaces and Pins ## Board to Board (B2B) I/Os FPGA bank number and number of I/O signals connected to the B2B connector: | FPGA Bank | Туре | B2B
Connector | I/O Signal Count | Voltage Level | Notes | |-----------|---------|------------------|-------------------------|---------------|------------------| | 24 | HD | JM2 | 24x I/O, 12x LVDS Pairs | Variable | Max voltage 3.3V | | 25 | HD | JM1 | 24x I/O, 12x LVDS Pairs | Variable | Max voltage 3.3V | | 26 | HD | JM1 | 24x I/O, 12x LVDS Pairs | Variable | Max voltage 3.3V | | 44 | HD | JM2 | 24x I/O, 12x LVDS Pairs | Variable | Max voltage 3.3V | | 65 | HP | JM2 | 18x I/O, 9x LVDS Pairs | Variable | Max voltage 1.8V | | 65 | HP | JM3 | 16x I/O, 8x LVDS Pairs | Variable | Max voltage 1.8V | | 505 | GTR | JM3 | 16x I/O, 8x LVDS Pairs | - | 4x lanes | | 505 | GTR CLK | JM3 | 1x Diff Clock | - | | | 501 | MIO | JM1 | 15 I/O | 3.3V | | #### General PL I/O to B2B connectors information For detailed information about the pin-out, please refer to the $\mbox{\sc Pin-out table}.$ ### **JTAG Interface** JTAG access to the Xilinx Zynq UltraScale+ is applicable by using Lattice MachXO CPLD through B2B connector JM2. | JTAG Signal | B2B Connector | Note | |-------------|---------------|---| | TMS | JM2-93 | | | TDI | JM2-95 | | | TDO | JM2-97 | | | тск | JM2-99 | | | JTAGEN | JM1-89 | Pulled Low: Xilinx Zynq UltraScale+ MPSoC
Pulled High: Lattice MachXO CPLD | JTAG pins connection ### **MGT Lanes** There are 4x MGT Lanes connected to FPGA Bank 505-GTR. The Xilinx Zynq UltraScale+ device used on the TE0821 module has 4 GTR transceivers. All 4 are wired directly to B2B connector JM3. MGT (Multi Gigabit Transceiver) lane consists of one transmit and one receive (TX/RX) differential pairs, four signals total per one MGT lane. Following table lists lane number, FPGA bank number, transceiver type, signal schematic name, board-to-board pin connection and FPGA pins connection: | Lane | Schematic | B2B | Note | |------|--|---|------| | 0 | B505_RX0_P B505_RX0_N B505_TX0_P B505_TX0_N | JM3-26JM3-28JM3-25JM3-27 | | | 1 | B505_RX1_P B505_RX1_N B505_TX1_P B505_TX1_N | JM3-20JM3-22JM3-19JM3-21 | | | 2 | B505_RX2_P B505_RX2_N B505_TX2_P B505_TX2_N | JM3-14JM3-16JM3-13JM3-15 | | | 3 | B505_RX2_P B505_RX2_N B505_TX2_P B505_TX2_N | JM3-8JM3-10JM3-7JM3-9 | | MGT Lanes connection # **Gigabit Ethernet** On-board Gigabit Ethernet PHY is provided with Marvell Alaska 88E1512 chip. The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. SGMII (SFP copper or fiber) can be used directly with the Ethernet PHY, as the SGMII pins are available on the B2B connector JM3. The reference clock input of the PHY is supplied from an on-board 25MHz oscillator (U11), the 125MHz output clock is left unconnected. | Pin | Schematic | Connected to | Note | |--------|-----------|--------------|------| | MDIP03 | PHY_MDI03 | B2B, JM1 | | | MDC | ETH_MDC | MIO76 | | | MDIO | ETH_MDIO | MIO77 | | |---------|-----------|--------------|--| | S_IN | S_IN | B2B, JM3 | | | S_OUT | S_OUT | B2B, JM3 | | | TXD03 | ETH_TXD03 | MIO6568 | | | TX_CTRL | ETH_TXCTL | MIO69 | | | TX_CLK | ETH_TXCK | MIO64 | | | RXD03 | ETH_RXD03 | MIO7174 | | | RX_CTRL | ETH_RXCTL | MIO75 | | | RX_CLK | ETH_RXCK | MIO70 | | | LED02 | PHY_LED02 | FPGA Bank 66 | | | RESETn | ETH_RST | MIO24 | | **GigaBit Ethernet connection** ## **System Controller CPLD** Special purpose pins are connected to System Controller CPLD and have following default configuration: | Pin Name | Mode | Function | Default Configuration | |----------|--------|--------------|---| | EN1 | Input | Power Enable | No hard wired function on PCB. When forced low, PGOOD goes low without effect on power management | | PGOOD | Output | Power Good | Only indirect used for power status, see CPLD description | | NOSEQ | - | - | No used for Power sequencing, see CPLD description | | RESIN | Input | Reset | Active low reset, gated to POR_B | | JTAGEN | Input | JTAG Select | Low for normal operation, high for CPLD JTAG access | System Controller CPLD special purpose pins Please check the entire information at TE0821 CPLD. ### **USB** Interface USB PHY is provided by Microchip USB3320. The ULPI interface is connected to the Zynq PS USB0. I/O voltage is fixed at 1.8V. Reference clock input for the USB PHY is supplied by the on-board 52.00 MHz oscillator (U14). | PHY Pin | ZYNQ Pin | B2B Name | Notes | |------------|----------|------------------|--| | ULPI | MIO5263 | - | Zynq USB0 MIO pins are connected to the USB PHY. | | REFCLK | - | - | 52.00 MHz from on-board oscillator (U14). | | REFSEL[02] | - | - | Reference clock frequency select, all set to GND selects 52.00 MHz. | | RESETB | MIO25 | - | Active low reset. | | CLKOUT | MIO52 | - | Connected to 1.8V, selects reference clock operation mode. | | DP, DM | - | OTG_D_P, OTG_D_N | USB data lines routed to B2B connector JM3 pins 47 and 49. | | CPEN | - | VBUS_V_EN | External USB power switch active high enable signal, routed to JM3 pin 17. | | VBUS | - | USB_VBUS | Connect to USB VBUS via a series of resistors, see reference schematics, routed to JM3 pin 55. | | ID | - | OTG_ID | For an A-device connect to ground, for a B-device left floating. routed from JM3 pin 23. | General overview of the USB PHY signals ## **I2C Interface** On-board I 2 C devices are connected to MIO38 (SCL) and MIO39 (SDA) which are configured as I 2 C0 by default. Addresses for on-board I 2 C slave devices are listed in the table below: | I2C Device | I2C Address | Notes | |-------------|-------------|-------| | Si5338A PLL | 0x70 | - | | EEPROM | 0x50 | - | Address table of the I2C bus slave devices ## **MIO Pins** | MIO Pin | Connected to | B2B | Notes | |---------|--------------------------|-----|-------------| | 05 | QSPI Flash, U7 | - | SPI Flash | | 712 | QSPI Flash, U17 | - | SPI Flash | | 1323 | eMMC, U6 | | | | 24 | ETH Transceiver, U8 | - | ETH_RST | | 25 | USB2.0 Transceiver, U18 | - | OTG_RST | | 2633 | User MIO | JM1 | | | 3437 | N.C | - | N.C | | 3839 | EEPROM, U25 | - | I2C_SDA/SCL | | 4045 | N.C | | N.C | | 4651 | SD Card | JM1 | | | 5263 | USB2.0 Transceiver, U18 | - | | | 6377 | Ethernet Transceiver, U8 | - | | MIOs pins ### **Test Points** | Test Point | Signal | Connected to | Notes | |------------|-----------|------------------------|----------| | 1 | I2C_SCL | EEPROM, U25 | | | 2 | I2C_SDA | EEPROM, U25 | | | 3 | SRST_B | FPGA Bank 503 | PSCONFIG | | 4 | PS_CLK | FPGA Bank 503 | PSCONFIG | | 5 | PROG_B | FPGA Bank 503 | PSCONFIG | | 6 | INIT_B | FPGA Bank 503 | PSCONFIG | | 7 | DONE | Red LED, D1 | | | 8 | PS_LP0V85 | Voltage Regulator, U12 | | | 9 | DDR_2V5 | Voltage Regulator, U4 | | | 10 | PS_AVCC | Voltage Regulator, U9 | | |----|-----------|-------------------------|--| | 11 | DDR_1V2 | Voltage Regulator, U15 | | | 12 | PS_AVTT | Voltage Regulator, U13 | | | 13 | PS_FP0V85 | Voltage Regulator, U26 | | | 14 | POR_B | Voltage Translator, U19 | | | 15 | PS_PLL | Voltage Regulator, U23 | | | 16 | PL_VCCINT | Voltage Regulator, U5 | | **Test Points Information** # **On-board Peripherals** | Chip/Interface | Designator | Notes | |------------------------------|---------------|-------| | QSPI Flash | U7, U17 | | | EEPROM | U25 | | | DDR4 SDRAM | U2,U3 | | | GigaBit Ethernet | U8 | | | USB2.0 Transceiver | U18 | | | eMMC Memory | U6 | | | Oscillators | U32, U14, U11 | | | Programmable Clock Generator | U10 | | | CPLD | U21 | | | LEDs | D13 | | On board peripherals # **Quad SPI Flash Memory** The TE0821 is equipped with dual Flash Memory, U7, U17. Two quad SPI compatible serial bus flash MT25QU512ABB8E12-0SIT memory chips are provided for FPGA configuration file storage. After configuration completes the remaining free memory can be used for application data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths to be used. The maximum data transfer rate depends on the bus width and clock frequency. | Pin | Schematic | | Notes | |-----------|-----------|---------|-------| | | U7 Pin | U17 Pin | | | nCS | MIO5 | MIO7 | | | CLK | MIO0 | MIO12 | | | DI/IO0 | MIO4 | MIO8 | | | DO/IO1 | MIO1 | MIO9 | | | nHOLD/IO3 | MIO3 | MIO11 | | | WP/IO2 | MIO2 | MIO10 | | **Quad SPI interface MIOs and pins** #### **EEPROM** There is a 2Kb EEPROM provided on the module TE0821. | MIO Pin | Schematic | U25 Pin | Notes | |---------|-----------|---------|-------| | MIO39 | I2C_SDA | SDA | | | MIO38 | I2C_SCL | SCL | | #### I2C EEPROM interface MIOs and pins | MIO Pin | I2C Address | Designator | Notes | |---------|-------------|------------|-------| | MIO3839 | 0x50 | U25 | | #### **I2C address for EEPROM** #### **LEDs** | Designator | Color | Connected to | Active Level | Note | |------------|-------|--------------|--------------|------| | D1 | Red | DONE | Low | | | D2 | Green | USR_LED | High | | | D3 | Red | ERR_OUT | High | | | D4 | Green | ERR_STATUS | High | | #### On-board LEDs ### **DDR4 SDRAM** The TE0821 SoM has dual 8 Gb volatile DDR4 SDRAM IC for storing user application code and data. • Part number: K4A8G165WB-BIRC Supply voltage: 1.2V Speed: 2400 Mbps Temperature: -40 ~ 95 °C # **System Controller CPLD** The System Controller CPLD (U21) is provided by Lattice Semiconductor LCMXO2-256HC (MachXO2 product family). It is the central system management unit with module specific firmware installed to monitor and control various signals of the FPGA, on-board peripherals, I/O interfaces and module as a whole. See also TE0821 System Controller CPLD page. ## **GigaBit Ethernet** On-board Gigabit Ethernet PHY (U8) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII interface is connected to the ZynqMP Ethernet3 PS GEM3. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.00 MHz oscillator (U11). | Pin | Schematic | Connected to | Note | |--------|-----------|--------------|------| | MDIP03 | PHY_MDI03 | B2B, JM1 | | | MDC | ETH_MDC | MIO76 | | | MDIO | ETH_MDIO | MIO77 | | |---------|-----------|--------------|--| | S_IN | S_IN | B2B, JM3 | | | S_OUT | S_OUT | B2B, JM3 | | | TXD03 | ETH_TXD03 | MIO6568 | | | TX_CTRL | ETH_TXCTL | MIO69 | | | TX_CLK | ETH_TXCK | MIO64 | | | RXD03 | ETH_RXD03 | MIO7174 | | | RX_CTRL | ETH_RXCTL | MIO75 | | | RX_CLK | ETH_RXCK | MIO70 | | | LED02 | PHY_LED02 | FPGA Bank 66 | | | RESETn | ETH_RST | MIO24 | | Ethernet PHY to Zyng SoC connections #### **USB2.0 Transceiver** Hi-speed USB ULPI PHY (U18) is provided with USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0 via MIO52..63, bank 502. The I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.00 MHz oscillator (U14). ### **eMMC Flash Memory** eMMC Flash memory device(U6) is connected to the ZynqMP PS MIO bank 500 pins MIO13..MIO23. eMMC chips IS21ES08G-JCLI (FLASH - NAND Speicher-IC (64 Gb x 1) MMC) is used. #### **Clock Sources** | Designator | Description | Frequency | Note | |------------|-----------------|-----------|------| | U11 | MEMS Oscillator | 25 MHz | | | U14 | MEMS Oscillator | 52 MHz | | | U32 | MEMS Oscillator | 80 MHz | | Osillators ## **Programmable Clock Generator** There is a Silicon Labs I^2C programmable clock generator Si5338A (U10) chip on the module. It's output frequencies can be programmed using the I^2C bus address 0x70 or 0x71. Default address is 0x70, IN4/I2C_LSB pin must be set to high for address 0x71. A 25.00 MHz oscillator is connected to the pin IN3 and is used to generate the output clocks. The oscillator has its output enable pin permanently connected to 1.8V power rail, thus making output frequency available as soon as 1.8V is present. Three of the Si5338 clock outputs are connected to the FPGA. One is connected to a logic bank and the other two are connected to the GTR banks. Once running, the frequency and other parameters can be changed by programming the device using the I^2C bus connected between the FPGA (master) and clock generator (slave). For this, proper I^2C bus logic has to be implemented in FPGA. | U25 Pin | Signal | Connected to | Direction | Note | |---------|---------|-----------------|-----------|------| | IN01 | CLK_IN | JM3 | IN | | | IN2 | CLK_25M | Oscillator, U11 | IN | | | SCL | I2C_SCL | EEPROM,U25 | INOUT | | |------|-----------|---------------|-------|--| | SDA | I2C_SDA | EEPROM,U25 | INOUT | | | CLK0 | CLK0 | JM3 | OUT | | | CLK1 | B505_CLK3 | FPGA Bank 505 | IN | | | CLK2 | B505_CLK1 | FPGA Bank 505 | IN | | | CLK3 | CLK3_N | | IN | | **Programmable Clock Generator Inputs and Outputs** # Power and Power-On Sequence ## **Power Supply** Power supply with minimum current capability of 3 A for system startup is recommended. ## **Power Consumption** | Power Input Pin | Typical Current | |-----------------|-----------------| | VIN | TBD* | | 3.3VIN | TBD* | #### **Power Consumption** # **Power Distribution Dependencies** ^{*} TBD - To Be Determined Power Distribution ## **Power-On Sequence** Power Sequency ### **Power Rails** | Power Rail Name | B2B JM1 Pin | B2B JM2 Pin | B2B JM3 Pin | Direction | Notes | |-----------------|-------------|-------------|-------------|-----------|---------------------------------------| | VIN | 1, 3, 5 | 2, 4, 6, 8 | - | Input | Supply voltage from the carrier board | | 3.3V | - | 10, 12 | - | Output | Internal 3.3V voltage level | | VCCO_HD25_26 | 9,11 | | - | Input | 0 to 3.3V Voltage | | 3.3VIN | 13, 15 | - | - | Input | Supply voltage from the carrier board | | 1.8V | 39 | - | - | Output | Internal 1.8V voltage level | | JTAG VREF | - | 91 | - | Output | JTAG reference voltage.
Attention: Net name on schematic is "3.3VIN" | |--------------|----|------|---|--------|---| | VCCO_HD24_44 | - | 7, 9 | - | Input | 0 to 3.3V Voltage | | VCCO_65 | - | 5 | - | Input | 0 to 1.8V Voltage | | PSBATT | 79 | - | - | Input | 1.2 to 1.5V Voltage | Module power rails. ## **Bank Voltages** | FPGA Bank | Schematic | Voltage | Note | |-------------------|----------------|----------|------------------| | Bank 24 HD | VCCO_HD24_44 | Variable | Max voltage 3.3V | | Bank 25 HD | VCCO_HD25_26 | Variable | Max voltage 3.3V | | Bank 26 HD | VCCO_HD25_26 | Variable | Max voltage 3.3V | | Bank 44 HD | VCCO_HD24_44 | Variable | Max voltage 3.3V | | Bank 64 HP | VCCO_64 | N.C | Not Connected | | Bank 65 HP | VCCO_65 | Variable | Max voltage 1.8V | | Bank 66 HP | VCCO_66 | 1.8V | | | Bank 500 PSMIO | VCCO_PSIO0_500 | 1.8V | | | Bank 501 PSMIO | VCCO_PSIO1_501 | 3.3V | | | Bank 502 PSMIO | VCCO_PSIO2_502 | 1.8V | | | Bank 503 PSCONFIG | VCCO_PSIO3_503 | 1.8V | | | Bank 504 PSDDR | DDR_1V2 | 1.2V | | Zynq SoC bank voltages. ### **Board to Board Connectors** These connectors are hermaphroditic. Odd pin numbers on the module are connected to even pin numbers on the baseboard and vice versa. 4 x 5 modules use two or three Samtec Razor Beam LSHM connectors on the bottom side. - 2 x REF-189016-02 (compatible to LSHM-150-04.0-L-DV-A-S-K-TR), (100 pins, "50" per row) - 1 x REF-189017-02 (compatible to LSHM-130-04.0-L-DV-A-S-K-TR), (60 pins, "30" per row) (depending on module) ### Connector Mating height When using the same type on baseboard, the mating height is 8mm. Other mating heights are possible by using connectors with a different height | Order number | Connector on baseboard | compatible to | Mating height | |--------------|-----------------------------|-----------------------------|---------------| | 23836 | REF-189016-01 | LSHM-150-02.5-L-DV-A-S-K-TR | 6.5 mm | | | LSHM-150-03.0-L-DV-A-S-K-TR | LSHM-150-03.0-L-DV-A-S-K-TR | 7.0 mm | | 23838 | REF-189016-02 | LSHM-150-04.0-L-DV-A-S-K-TR | 8.0 mm | | | LSHM-150-06.0-L-DV-A-S-K-TR | LSHM-150-06.0-L-DV-A-S-K-TR | 10.0mm | | 26125 | REF-189017-01 | LSHM-130-02.5-L-DV-A-S-K-TR | 6.5 mm | |-------|-----------------------------|-----------------------------|--------| | | LSHM-130-03.0-L-DV-A-S-K-TR | LSHM-130-03.0-L-DV-A-S-K-TR | 7.0 mm | | 24903 | REF-189017-02 | LSHM-130-04.0-L-DV-A-S-K-TR | 8.0 mm | | | LSHM-130-06.0-L-DV-A-S-K-TR | LSHM-130-06.0-L-DV-A-S-K-TR | 10.0mm | #### Connectors. The module can be manufactured using other connectors upon request. #### Connector Speed Ratings The LSHM connector speed rating depends on the stacking height; please see the following table: | Stacking height | Speed rating | |---------------------|--------------------| | 12 mm, Single-Ended | 7.5 GHz / 15 Gbps | | 12 mm, Differential | 6.5 GHz / 13 Gbps | | 5 mm, Single-Ended | 11.5 GHz / 23 Gbps | | 5 mm, Differential | 7.0 GHz / 14 Gbps | #### Speed rating. #### **Current Rating** Current rating of Samtec Razor Beam™ LSHM B2B connectors is 2.0A per pin (2 adjacent pins powered). #### Connector Mechanical Ratings Shock: 100G, 6 ms SineVibration: 7.5G random, 2 hours per axis, 3 axes total #### Manufacturer Documentation | File | Modified | |--|-------------------------------| | PDF File hsc-report_lshm-lshm-05mm_web.pdf High speed test report | 07 04, 2016 by Thorsten Trenz | | PDF File lshm_dv.pdf LSHM catalog page | 07 04, 2016 by Thorsten Trenz | | PDF File LSHM-1XX-XX.X-X-DV-A-X-X-TR-FOOTPRINT(1).pdf Recommended layout and stencil drawing | 07 04, 2016 by Thorsten Trenz | | PDF File LSHM-1XX-XX.X-XX-DV-A-X-X-TR-MKT.pdf Technical drawing | 07 04, 2016 by Thorsten Trenz | | PDF File REF-189016-01.pdf Technical Drawing | 07 04, 2016 by Thorsten Trenz | | PDF File REF-189016-02.pdf Technical Drawing | 07 04, 2016 by Thorsten Trenz | | PDF File REF-189017-01.pdf Technical Drawing | 07 04, 2016 by Thorsten Trenz | | PDF File REF-189017-02.pdf Technical Drawing | 07 04, 2016 by Thorsten Trenz | | PDF File TC09232523_report_Rev_2_qua.pdf Design qualification test report | 07 04, 2016 by Thorsten Trenz | | PDF File tc09292611_qua(1).pdf Shock and vibration report | 07 04, 2016 by Thorsten Trenz | | | | # **Technical Specifications** # **Absolute Maximum Ratings** | Description | Min | Max | Unit | Notes | |--|-------|------------------|------|---| | VIN supply voltage | -0.3 | 7 | V | See EN6347QI and TPS82085SIL datasheets | | 3.3VIN supply voltage | -0.1 | 3.630 | V | Xilinx DS925 and TPS27082L datasheet | | PS I/O supply voltage, VCCO_PSIO | -0.5 | 3.630 | V | Xilinx document DS925 | | PS I/O input voltage | -0.5 | VCCO_PSIO + 0.55 | V | Xilinx document DS925 | | HP I/O bank supply voltage, VCCO | -0.5 | 2.0 | V | Xilinx document DS925 | | HP I/O bank input voltage | -0.55 | VCCO + 0.55 | V | Xilinx document DS925 | | HD I/O bank supply voltage, VCCO | -0.5 | 3.4 | V | Xilinx document DS925 | | HD I/O bank input voltage | -0.55 | VCCO + 0.55 | V | Xilinx document DS925 | | PS GTR reference clocks absolute input voltage | -0.5 | 1.1 | V | Xilinx document DS925 | | PS GTR absolute input voltage | -0.5 | 1.1 | V | Xilinx document DS925 | | Voltage on SC CPLD pins | -0.5 | 3.75 | V | Lattice Semiconductor MachXO2 datasheet | | Storage temperature | -40 | +85 | °C | See eMMC datasheet | PS absolute maximum ratings # **Recommended Operating Conditions** Operating temperature range depends also on customer design and cooling solution. Please contact us for options. | Parameter | Min | Max | Units | Reference Document | |-----------------------------------|-------|------------------|-------|--| | VIN supply voltage | 3.3 | 6 | V | See TPS82085S datasheet | | 3.3VIN supply voltage | 3.3 | 3.465 | V | See LCMXO2-256HC, Xilinx DS925 datasheet | | PS I/O supply voltage, VCCO_PSIO | 1.710 | 3.465 | V | Xilinx document DS925 | | PS I/O input voltage | -0.20 | VCCO_PSIO + 0.20 | V | Xilinx document DS925 | | HP I/O banks supply voltage, VCCO | 0.950 | 1.9 | V | Xilinx document DS925 | | HP I/O banks input voltage | -0.20 | VCCO + 0.20 | V | Xilinx document DS925 | | HD I/O banks supply voltage, VCCO | 1.14 | 3.4 | V | Xilinx document DS925 | | HD I/O banks input voltage | -0.20 | VCCO + 0.20 | V | Xilinx document DS925 | | Voltage on SC CPLD pins | -0.3 | 3.6 | V | Lattice Semiconductor MachXO2 datasheet | | Operating Temperature Range | 0 | 85 | °C | Xilinx document DS925, extended grade Zynq temperarure range | Recommended operating conditions. ## **Physical Dimensions** - Module size: 40 mm x 50 mm. Please download the assembly diagram for exact numbers. Mating height with standard connectors: 8 mm. PCB thickness: 1.74 mm. **Physical Dimension** # **Currently Offered Variants** | Trenz shop TE0821 overview page | | |---------------------------------|-------------| | English page | German page | **Trenz Electronic Shop Overview** # **Revision History** # **Hardware Revision History** | Date | Revision | Changes | Documentation Link | |------------|----------|-----------------|--------------------| | 2019-04-26 | REV01 | Initial Release | REV01 | #### **Hardware Revision History** Hardware revision number can be found on the PCB board together with the module model number separated by the dash. Board hardware revision number. # **Document Change History** | | Date | Revision | Contributor | Description | | |--|------|----------|-------------|-------------|--| |--|------|----------|-------------|-------------|--| #### Error rendering macro 'pageinfo' Ambiguous method overloading for method jdk. proxy279.\$Proxy4022#hasCon tentLevelPermission. Cannot resolve which method to invoke for [null, class java. lang.String, class com. atlassian.confluence.pages. Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user. ConfluenceUser, class java. lang.String, class com. atlassian.confluence.core. ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core. ContentEntityObject] ### Error rendering macro 'pageinfo' Ambiguous method overloading for method jdk. proxy279.\$Proxy4022#hasCon tentLevelPermission. Cannot resolve which method to invoke for [null, class java. lang.String, class com. atlassian.confluence.pages. Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user. ConfluenceUser, class java. lang.String, class com. atlassian.confluence.core. ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core. ContentEntityObject] ### Error rendering macro 'pageinfo' Ambiguous method overloading for method jdk. proxy279.\$Proxy4022#hasCon tentLevelPermission. Cannot resolve which method to invoke for [null, class java. lang.String, class com. atlassian.confluence.pages. Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user. ConfluenceUser, class java. lang.String, class com. atlassian.confluence.core. ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com. atlassian.confluence.core. ContentEntityObject] bugfix boot mode | 2021-07-05 | v.61 | John Hartfiel | Update download Link Update Change history | |------------|------|------------------|--| | 2021-06-07 | v.59 | Vadim Yunitski | Added
missing
text in
Bank
Voltages Fixed
typo in
Bank
Voltages | | 2020-07-15 | v.50 | Pedram Babakhani | Initial Release | all Error rendering macro 'pageinfo' Ambiguous method overloading for method jdk. proxy279.\$Proxy4022#hasCon tentLevelPermission. Cannot resolve which method to invoke for [null, class java. lang.String, class com. atlassian.confluence.pages. Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user. ConfluenceUser, class java. lang.String, class com. atlassian.confluence.core. ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com. atlassian.confluence.core. ContentEntityObject] Document change history. ### Disclaimer ### **Data Privacy** Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy ## **Document Warranty** The material contained in this document is provided "as is" and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. ## **Limitation of Liability** In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof. ### **Copyright Notice** No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic. ### **Technology Licenses** The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license. #### **Environmental Protection** To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment. ### REACH, RoHS and WEEE #### **REACH** Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA). #### **RoHS** Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant. #### WEEE Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment. Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676. Error rendering macro 'page-info' Ambiguous method overloading for method jdk.proxy279.\$Proxy4022#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com. atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]