
SPI 32 Bit Addressing

Xilinx 7 Series FPGA

Zynq-7000, 16Mbyte Issue

Solutions #10 and #11 are described in Xilinx .AR57744

Solution Good Bad

0 Use single
16MByte
flash

There are no issues. Can be implemented
as assembly option, no PCB change
needed, only BOM change.

SPI Flash is limited to 16MByte.

1 Use
stacked
16MByte
flashes

32MB can be safely accessed at full
speed, only 1 extra pin needed from MIO,

Hardware (PCB) change, more space needed on PCB.

2 Use 16MB
flash,
parallel
configuration

32MB can be safely accessed at full
speed, very fast XiP.

Hardware (PCB) change, more space needed on PCB, almost all Bank500 pins are used for Flash.

3 Limit the
access to
lower
16Mbytes

No change of code or hardware. Only 16MBytes can be accessed safely, may have to take special actions to actually limit the access
to lower 16Mbyte

4 Preload
everything
above
16Mbytes
in FSBL,
limit
access to
lower
16Mbytes
after FSBL
handout

Only FSBL changes needed, use 24 bit
bit addressing SPIx4 commands and not
EAR register.

Access above 16MByte should not be performed from SSBL or application code, may have to take
special actions to actually limit the access to lower 16Mbyte. All code above 16MByte has to be read in
FSBL as one chunk, as last SPI Read command has to use address in lower 16Myte.

5 Preload
everything
above
16Mbytes
in FSBL,
limit
access to
lower
16Mbytes
after FSBL
handout

Only FSBL changes needed, use of 32 bit
addressing SPIx1 commands and not
EAR register.

Access above 16MByte should not be performed from SSBL or application code, may have to take
special actions to actually limit the access to lower 16Mbyte. Flash reads above 16MByte in the FSBL
are slower as the use x1 mode.

http://www.xilinx.com/support/answers/57744.html

6 Rewrite
FSBL,
SSBL and
OS/RTOS
Drivers to
avoid using
EAR
register
and
"legacy
mode"

Truly safe solution, no hardware changes
no restriction on SPI Flash Partitioning.
Very good solution for bare metal
applications.

A lot of Code and drivers to modify, the patches have to be applied again after each software release.
Access to SPI Flash above 16Mbyte must be done using SPIx1 mode command set, when using good
speed optimized code the performance penalty is not that bad.

7 Place
"reboot.
bin" at
16MByte
boundary

No change of code of hardware. 256KByte sector at 16Mbyte offset in SPI Flash is "reserved" it must contain the "reboot.bin" image,
special tool and/or scripts are needed to assemble the SPI Flash images to satisfy this requirement. If
reset occurs while EAR =! 0 then Zynq PS is doing double reset sequence, first the reboot.bin
executes, then it clears EAR and forces Zynq ARM core to reset followed by normal boot from Flash
Address 0. However as reboot.bin does not perform any peripheral or memory or PLL initialization it
executes very fast so the extra delay in startup is small. Boot history registers are also affected as
there is sometimes extra reset involved during the boot. The likelihood of the double-reset to happen
can be reduced if SSBL and application software do always include a dummy read from lower
16MByte after accesses to addresses above 16MB.

8 Duplicate
FSBL at
16MByte
boundary

Small change of FSBL, same FSBL at
offset 0 and 16MByte. Code change
affects only EAR register, all SPI Reads
are still done using x4 commands. Same
FSBL executes always no matter from
what offset it was loaded, there is no
significant change in startup time. There is
no extra reset involved.

256KByte sector at 16Mbyte offset in SPI Flash is "reserved" it must contain the "boot.bin" image (with
the same FSBL as at offset 0), special tool and/or scripts are needed to assemble the SPI Flash
images to satisfy this requirement.

9 Duplicate
EAR
modified
FSBL at
16MByte
boundary

Small change of FSBL, mofidied FSBL at
offset 16MByte. Code change affects only
EAR register, all SPI Reads are still done
using x4 commands. Functionally same
FSBL executes always no matter from
what offset it was loaded, there is no
significant change in startup time, FSBL
at normal start offset 0 is not modified at
all. There is no extra reset involved.

256KByte sector at 16Mbyte offset in SPI Flash is "reserved" it must contain the "boot.bin" image (with
the EAR patched FSBL as at offset 0), special tool and/or scripts are needed to assemble the SPI
Flash images to satisfy this requirement. Two versions of the same FSBL have to be compiled each
time when FSBL is changed or generated.

10 System
Controller
in external
CPLD
forcing SPI
Flash reset
using
Flash reset
pin.

Small changes of software (need to pull
one MIO Pin to fixed level).

One extra MIO pin is wasted. CPLD has to detect reliable all types of resets, this is only possible with
software assistance. This detection may fail during debug sessions, so extra operation mode may
have to be implemented to disable the CPLD reboot resets temporary. Have to use special SPI Flash
IC with dedicated Reset input.

11 System
Controller
in external
CPLD
forcing SPI
Flash reset
by
controlling
the power
rail of the
Flash.

Small changes of software (need to pull
one MIO Pin to fixed level). Can use
Flash IC with no dedicated Reset pin.

One extra MIO pin is wasted. CPLD has to detect reliable all types of resets, this is only possible with
software assistance. This detection may fail during debug sessions, so extra operation mode may
have to be implemented to disable the CPLD reboot resets temporary. CPLD has to be able to control
the power rail of the SPI Flash using FET switch, or then be able to control the power supply that
delivers the power to the Flash. There is extra FET and CPLD control pin needed, or if Flash shares
power with other components then the complete power rail has to be turned off to implement Flash
Reset.

12 System
Controller
in external
CPLD
forcing SPI
Flash reset
by using
JTAG
Boundary
scan
commands.

Small changes of software (need to pull
one MIO Pin to fixed level). Can use
Flash IC with no dedicated Reset pin. No
need to switch off power from SPI Flash.

One extra MIO pin is wasted. CPLD has to detect reliable all types of resets, this is only possible with
software assistance. This detection may fail during debug sessions, so extra operation mode may
have to be implemented to disable the CPLD reboot resets temporary. CPLD has to be implement a
JTAG functionality and play back a sequence that shifts in Reset command into SPI Flash. System
Controller CPLD has to have access to Zynq JTAG and be large enough to implement the JTAG
sequence playback.

1.
2.

13 System
Controller
in external
CPLD
implementi
ng
watchdog
and fall-
back from
SPI mode
to SD Card
boot mode.

No software changes. SD card must be available as boot media all the times.

14 External
Watchdog
forcing full
power off
cycle.

No software changes. No hardware
changes to the module/SoM.

Hardware changes to the system or base board.

15 Limit SPI
Flash
access to
Lower
16MB, use
eMMC for
main
storage.

No changes if eMMC is supported and
available in the target hardware. Large
nonvolatile storage in eMMC.

SoM Supported Notes

TE0720-02 except -1CR 0*,3-9,11-15

TE0720-02-1CR 0*,3-9,11-14 -1CR has no eMMC

TE0715-01 0*,3-9,11-14

TE0728 0 16MByte flash used, the problem does not apply at all

References
Spansion Appnote for Zynq-7000
Xilinx AR57744

http://www.spansion.com/Support/Application%20Notes/Optimizing_Quad_SPI_Read_on_Zynq-7000_AN.pdf

	SPI 32 Bit Addressing

