
TEM0007 Test Board

Overview

Refer to for the current online version of this manual and other available http://trenz.org/tem0007-info
documentation.

Key Features
Libero SoC v2023.1
SoftConsole v2022.2-RISC-V-747
PolarfireSoC MSS Configurator v2023.1
HSS (Hardware System Service) v2023.02
Microchip polarfire SoC BSP v2022.11
FPExpress v2023.1
Linux distribution BSP: "Yocto Kirkstone"
UART
ETH
USB
I2C
QSPI flash
LPDDR4 memory

Revision History

Date Libero SoC Project Built Authors Description

2024-04-17 v2023.1 TEM0007-
test_board_noprebui
lt-libero_23.1-
20240417101518.zip
TEM0007-
test_board-
libero_23.1-
20240417101518.zip

Mohsen Chamanbaz
Release for
more variants
The design is
matched to
new carrier
board
TEB2000.

2023-11-13 v2023.1 TEM0007-
test_board_noprebui
lt-libero_23.1-
20231113135744.zip
TEM0007-
test_board-
libero_23.1-
20231113135744.zip

Mohsen Chamanbaz
Clock
frequency of
LPDDR4
reduced to
500MHz.
USB and
ethernet phys
will be reset
while booting.

2023-09-07 v2023.1 TEM0007-
test_board_noprebui
lt-libero_23.1-
20230907135657.zip
TEM0007-
test_board-
libero_23.1-
20230907135657.zip

Mohsen Chamanbaz
initial release

Design Revision History

Table of contents

1 Overview
1.1 Key Features
1.2 Revision History
1.3 Release Notes and Know Issues
1.4 Requirements

1.4.1 Software
1.4.2 Additional software requirement
1.4.3 Hardware

1.5 Content
1.5.1 Design Sources
1.5.2 Prebuilt
1.5.3 Download

2 Design Flow
2.1 Libero SoC

3 Launch
3.1 Hardware Setup
3.2 Programming Bitstream

3.2.1 Using Libero SoC
3.2.2 Using FPExpress software

3.3 Programming eNVM
3.3.1.1 Programming eNVM in SoftConsole
3.3.1.2 Programming eNVM in Flashpro Express

3.3.2 SD-Boot mode
3.3.3 JTAG

3.4 Usage
3.4.1 UART

4 System Design - Libero
4.1 Block Design

4.1.1 HPS Interfaces
4.2 Constraints

5 Software Design - SoftConsole
5.1 Application
5.2 Hart Software Services (HSS)

5.2.1 Creating HSS workspace in SoftConsole
5.2.2 Creating XML file in PolarfireSoC MSS Configurator Software

6 Software Design - Yocto
6.1 U-Boot
6.2 Device Tree

6.2.1 U-boot Device Tree
6.2.2 Kernel Device Tree

6.3 Kernel
6.4 Images
6.5 Rootfs

7 Appx. A: Change History and Legal Notices
7.1 Document Change History
7.2 Legal Notices
7.3 Data Privacy
7.4 Document Warranty
7.5 Limitation of Liability
7.6 Copyright Notice
7.7 Technology Licenses
7.8 Environmental Protection
7.9 REACH, RoHS and WEEE

8 Table of contents

http://trenz.org/tem0007-info

Release Notes and Know Issues

Issues Description Workaround To be fixed version

No known issues --- --- ---

Known Issues

Requirements

Software

Software Version Note

Libero SoC v2023.1 needed for generating / viewing
/ modifying the hardware design

FPExpress v2023.1 needed. Included within Libero
SoC installation or as a
standalone application .

SoftConsole v2022.2 needed for generating / viewing
/ modifying the software design

PolarfireSoC MSS Configurator v2023.1 needed for configuration of MSS

Linux distribution "Yocto" Kirkstone needed

Software

Additional software requirement

Requirement Version Note

Hart Software Services v2023.02 needed

Microchip PolarFire SoC Yocto
 (meta-polarfire-soc-yocto-BSP

bsp)

 v2022.11 needed

Additional Software Requirement

Hardware

Complete List is available on <project folder>/board_files/*_board_files.csv

Design supports following modules:

Module
Model

Board
Part
Short
Name

Yocto
Machine Name

PCB
Revision Support

DDR QSPI
Flash

EMMC Others Notes

TEM0007-
01-S002

25_1E0_ES
_1GB

tem0007 REV01 1GB 64MB ---- ---- ----

TEM0007-
01-CHE11-
A*

250_1E_1GB tem0007 REV01 1GB 64MB ---- ---- ----

TEM0007-
01-CAA11-
A

025_1E_1GB tem0007 REV01 1GB 64MB ---- ---- ----

TEM0007-
01-CAD11-
A

025_1I_1GB tem0007 REV01 1GB 64MB ---- ---- ----

TEM0007-
01-CBD11-
A

095_1I_1GB tem0007 REV01 1GB 64MB ---- ---- ----

*used as reference
Hardware Modules

The Design requires one of the following carriers:

Carrier Model PCB Revision Support Notes

Modified TE0703 ---- As carrier board. This board
must be modified. For more

 information see Modified
TE0703 for Microchip Getting
Started

TEB2000* REV01 The carrier board for TEM0007.
For more information refer to TE
B2000 Getting Started

used as reference*

Hardware Carrier

Additional hardware requirements:

Additional Hardware Quantity Notes

TE0790 XMOD 1 For HSS console

Mini USB cable for JTAG/UART 2 Check Carrier Board and
Programmer for correct type

RJ45 Ethernet cable 1

SD card 1 At least 8GB

USB Stick 1 Optional

Additional Hardware

Content
For further insight into the structure of a Trenz Reference Design Download and usage of its content in
general , please follow the link Project Delivery - Microchip devices

Design Sources

Type Location Notes

Folder name Path inside the Trenz
Reference Download Archive

Libero <project folder>/libero_source Hardware Design Project , will
be generated by TE Scripts

https://wiki.trenz-electronic.de/display/PD/Modified+TE0703+for+Microchip+Getting+Started
https://wiki.trenz-electronic.de/display/PD/Modified+TE0703+for+Microchip+Getting+Started
https://wiki.trenz-electronic.de/display/PD/Modified+TE0703+for+Microchip+Getting+Started
https://wiki.trenz-electronic.de/display/PD/TEB2000+Getting+Started
https://wiki.trenz-electronic.de/display/PD/TEB2000+Getting+Started
https://wiki.trenz-electronic.de/pages/viewpage.action?pageId=179803764

<project folder>/libero_<Board
Part Short Name>

Source files for specific
assembly variants

SoftConsole <project folder>
/softconsole_source

Software Design / Boot Code /
Bootloader / Application
Software

Yocto <project folder>/os/yocto Linux distribution. Trenz
electronic yocto BSP files for
TEM0007

<project folder>/prebuilt Compiled binaries to program
Hard and Soft -ware Designs

<project folder>scripts TE Scripts folder

*.cmd <project folder> Starting scripts for the most
imported TE Scripts

Design sources

Prebuilt

File File-Extension Description

Libero Project File *.prjx Project file

FlashPro Express Job *.job The exported job file contains
the data contents to be
programmed into PolarFire
FPGA and external SPI Flash.
This job file is used in the
FlashPro Express software to
program both device and
external SPI Flash.

Constraint File *.pdc IO constraint file

Timing Constraint File *.sdc Timing constraint file

Configuration File *.cfg Polarfire MSS configuration file
is prepared in Polarfire MSS
Configurator software.
The Polarfire MSS
Configuration software will
export the * xml .cxf files after . , *
that.

Components in Block Design *.cxf Exported file of Polarfire MSS
Configuration software for
importing in Libero software

xml file *.xml Exported file of Polarfire MSS
Configuration software for
importing in SoftConsole
software

Software Application File *.hex Generated hex file by
SoftConsole software to
program on eNVM memory of
Polarfire SoC

Software-Application-File *.elf Software application generated
by SoftConsole software

Libero Application File *.ppd / *dat Bitstream files

Device Tree *.dtb Device tree blob

CONF-File *.conf Boot configuration file

Yocto linux image *.wic This File can be flashed via
bmaptool command in host
linux or other tools same as Win

 32DiskImager or balenaEtcher
on the SD card.

Yocto linux image *.img Linux image for SD card

Prebuilt files (only on ZIP with prebult content)

Download

Reference Design is only usable with the specified Libero version. Do never use different versions of
Libero software for the same project.

Reference design is available on:

TEM0007 "Test Board" Reference Design

Design Flow

Trenz Electronic provides a TCL project generation based on Microchip's Design Flow where possible.

See also:

Project Delivery - Microchip devices

Libero SoC

 The Libero SoC Hardware Design Project for this board is delivered as a TCL script which utilizes the
Libero SoC Command API .

The script Libero SoC Project will be generated into the folder "<project folder> / libero_<Variant short
name>".

Run the script "Generate_TEM0007_Hardware-Design_in_Libero_SoC_v2023.1.cmd" and
follow instructions on the console :

The script searches for a suitable Libero SoC installation at the beginning and lists
them plus some other option to manually guide the script to the Libero SoC installation
of your liking .
Further will the script offer options to chose from :

Upgrade all Libero SoC General Soft Cores
Select your Trenz Board Subversion / Assembly Variant from a list
Select the set of Soft Cores to be used during project generation. The set of
soft cores versions used during development or the newest available versions
and if possible this selection is possible , download them or use a copy from
the Trenz Download
When necessary , to resolve a Folder Overwrite Conflict
Chose your prefered Hardware Description Language (VHDL / Verilog)

After the project generation , the script continues with the following options :
Compile the bitstream of the project and obtain the Programming Files
Open the project for use

Reference Design is available with and without prebuilt files. It's recommended to use TE
prebuilt files for first launch.

https://shop.trenz-electronic.de/Download/?path=Trenz_Electronic/Modules_and_Module_Carriers/4x5/TEM0007/Reference_Design/2023.1/test_board
https://wiki.trenz-electronic.de/pages/viewpage.action?pageId=179803764

Project generation script console messages

 E:\Microchip_svn\23.1\designs\TEM0007\test_board\scripts\
Generate_TEM0007_Hardware-Design_in_Libero_SoC_v2023.1

--------------- Start : design_subversion_setup.tcl

Autostart via System Path Variable "acttclsh" ### -
Probing for acttclsh.exe
"where acttclsh"
INFORMATION: Es konnten keine Dateien mit dem angegebenen
Muster gefunden werden.

Autostart via System Path Variable "tclsh" ### -
Probing for tclsh.exe
"where tclsh"
INFORMATION: Es konnten keine Dateien mit dem angegebenen
Muster gefunden werden.

Autostart searching for default Libero SoC
installation ### - Searching for acttclsh.exe
List of Libero_SoC installations in c:\Microchip\ and their
TCL Shell(s) :
Libero_SoC_v2023.1
 c:\Microchip\Libero_SoC_v2023.1\Designer\bin\acttclsh.exe

Autostart via Libero_SoC TCL Shell # - Executing script
 Using TCL Shell c:\Microchip\Libero_SoC_v2023.
1\Designer\bin\acttclsh.exe

Processing script parameters :
 Setting dict key:windowWidth value:118 pair
 Console window has width : 118
 Parameter path not an argument to this script : key "path"
not known in dictionary

-------------------- TEM0007 test_design

TCL Version : 8.6

This script generates the Hardware Design for the Trenz
Electronic module series TEM0007.
 The Hardware Design itself is a Microchip Libero SoC
Design Suite project.

This script requires a Libero SoC installation equal or later
than :
 Libero SoC Version 2023.1

 [When the built stops with the error message :
 Error: Cannot find Spirit core configuration file
for vendor:.. library:.. name:.. version:...
 Error: The command 'create_and_configure_core'
failed.

 Upgrading the Libero SoC Soft Core Catalog can help .
 To do so , use the script option to upgrade the

cores later in this script .

 Manually this is done via :
 Open Libero and go to the Soft Core Catalog via
"View > Windows > Catalog"
 and press the button "Download them now!" .]

Found Libero SoC installations in default folder :
 C:/Microchip/Libero_SoC_v2023.1
 C:/Microsemi/Libero_SoC_v2021.2
 C:/Microsemi/Libero_SoC_v12.4

Select from the following options which Libero SoC
version should be used
 to build the design :

 Option 0 : C:/Microchip/Libero_SoC_v2023.1/Designer/bin
/libero.exe
 Option 1 : Enter path to your Microchip or Libero SoC
installations folder
 The script selects automatically the Libero exe
 Option 2 : Enter the full path to your Libero SoC exe
 Option 3 : Exit the script
 Selection : (0 to 3) 0

 Using Libero SoC @ : C:/Microchip/Libero_SoC_v2023.1
/Designer/bin/libero.exe

Do you wish to update the Libero SoC Soft Cores ?
 (Yes = y/t/1 or No = n/f/0) : 1
 Updating soft cores started

Console Mode = Downloading Microchip:SolutionCore:YCbCrtoRGB:
4.6.0...
OK
Info: Core 'Microchip:SolutionCore:YCbCrtoRGB:4.6.0' was
successfully downloaded.
Downloading Microsemi:MiV:MIV_RV32:3.1.200...
OK

Hardware Designs are available for these variants :
 ID : PRODID FAMILY DEVICE
PACKAGE SPEED TEMP SHORTNAME FLASH_SIZE
 DDR_SIZE PCB_REV NOTES

 1 : TEM0007-01-S002 "PolarfireSoC" MPFS250T_ES
FCVG484 STD EXT 25_1E0_ES_1GB NA
 1GB REV01 "produced prototyp"
 2 : TEM0007-01-CHE11-A "PolarfireSoC" MPFS250T
FCVG484 STD EXT 250_1E_1GB NA
 1GB REV01 "produced"
 3 : TEM0007-01-CAA11-A "PolarfireSoC" MPFS025T
FCVG484 STD EXT 025_1E_1GB NA
 1GB REV01 "currently factory order
5555"
 4 : TEM0007-01-CAD11-A "PolarfireSoC" MPFS025T
FCVG484 -1 IND 025_1I_1GB NA
 1GB REV01 "currently ERP only"
 5 : TEM0007-01-CBD11-A "PolarfireSoC" MPFS095T

FCVG484 -1 IND 095_1I_1GB NA
 1GB REV01 "currently factory order
5555"
 6 : Exit script

 Enter ID number of your board (1 to 6) : 1

Which Soft Core Versions should be used to generate the
Hardware Design ?
 (The design can be generated with local sources ,
 when a Libero SoC version with the same major version is
used)

 Option 0 : Download the newest soft core versions
 Option 1 : Download the soft cores versions , for which
the Hardware Design was verified
 Option 2 : Use a local copy of the soft cores sources ,
which the Hardware Design was verified for
 Option 3 : Exit script
 Selection : (0 to 3) 1

Folder overwrite protection .
 Checking for existing Libero SoC project folder named
"libero_25_1E0_ES_1GB" :
 Found existing Libero SoC project folder
"libero_25_1E0_ES_1GB"

 Select how to proceed :
 Option 0 : Overwrite this Libero SoC project folder
 Option 1 : Enter new Libero SoC project folder name
 Option 2 : Exit script
 Selection : (0 to 2) 0

Which Hardware Description Language do you prefer :
 VHDL or Verilog ?
 Option 0 : VHDL
 Option 1 : Verilog
 Option 2 : Exit script
 Selection : (0 to 2) 0

Determine expected Libero SoC Project path lengths :
 Expected maximum Libero SoC Project path length :
 root + project name + relatvive path = path length
 48 + 21 + 135 = 204

 The root path length is well below the Libero SoC Path
Length Limit of 250 chars .
 The Hardware Designs Build / Synthesis or Bitstream
generation should succeeded .

Building the hardware design started at 17:17:38 , this
will take some minutes .
 [In rare cases, this console may not advance from
here on .
 Visible through a not blinking cursor. Wait some
minutes ,

 focus the console and press space, the script will
continue .]

Checking the results via log evaluation :
 Hardware design generation was successfull The projects
path is :
E:/Microchip_svn/23.1/designs/TEM0007/test_board
/libero_25_1E0_ES_1GB

 The build log "libero_25_1E0_ES_1GB_build_2024.02.19_171738.
log" was saved to :
E:/Microchip_svn/23.1/designs/TEM0007/test_board/log

Hardware Design Compilation and Bitstream Generation :
 Do you want the these files to be build and exported ?
 Selection (Yes = y/t/1 or No = n/f/0) : 1

 Generating folders for prebuilt files
 Folder bitstream already exists and will be overwritten
 Folder flashpro already exists and will be overwritten

Executing the prebuilt started at 17:22:24 , this will
take some minutes .

Checking the results via log evaluation :
Generation and export of Prebuilt Files was successfull

The files have been exported to the subfolders
bitstream and flashpro inside :
E:/Microchip_svn/23.1/designs/TEM0007/test_board/prebuilt
/hardware/25_1E0_ES_1GB

The prebuilt log "libero_25_1E0_ES_1GB_prebuilt_2024.02.19
_171738.log" was saved to :
E:/Microchip_svn/23.1/designs/TEM0007/test_board/log

Open the generated Libero Soc TEM0007 test_design ?
Selection (Yes = y/t/1 or No = n/f/0) : 1

Please press any key . . .

Now the generated and exported files existing in prebuilt folder are without HSS generated hex
/elf file. If the hex file is attached to job file it will not be necessary to program HSS generated
hex file on eNVM memory. To attach the hex file to job file execute the following instructions
(optional).

After generating bitstream file double click on "Configure Design Initialization Data and
Memories" in Design Flow now.

In test board reference zip file the job files in prebuilt folder consist of HSS generated
hex file. The following instruction are only to know , how the final job file is prepared
and regenerated.

Click on eNVM and after that on Add and click on Add Boot Mode 1 Client.
Enter the path of generated *.hex SoftConsole software (HSS) or the path of saved *.hex File by
file in prebuilt folder (for example "...\test_board\prebuilt\hardware\250_1E_1GB"and click on
OK.

Save the project and double click on Generate Bitstream.

Double click on "Export Flashpro ExpressJob" and enter the desired path for *.job file to
generate .job will be used to program the polarfire soc in FPExpress software..job File. The *

Launch

Hardware Setup
Connect the TEB2000 carrier board via its J4 mini USB connector to the PC. (For Linux console)
Connect the TEB2000 carrier board via its J21 mini USB connector to the PC. (For HSS
console)
Connect the 5V power supply to 5V input voltage connector J13.
Connect the RJ45 network cable to the ethernet interface J14.
Connect the USB stick to the USB stick socket J12.
For more information see TEB2000 Getting Started

Programming Bitstream

There is two ways to program bitstream file on FPGA. The Bitstream can be programmed into the FPGA
/ SOC by Libero SoC or Flash Pro Express :

Using Libero SoC

Prepare the hardware see Hardware Setup
Double click onto "Run PROGRAM Action" to program the Polarfire SoC.

Check module and carrier TRMs for proper HW configuration before you try any design.

https://wiki.trenz-electronic.de/display/PD/TEB2000+Getting+Started

1.

Using FPExpress software

Prepare the hardware see Hardware Setup
Click on to open the "Creat New Job Project" dialogNEW...
Clicking onto the upper button to specify the Programming Job File locationBrowse...
Clicking onto the lower button to specify the location of where to store the FlashPro Browse...
Express Job Project which will be created .The Job Project name automatically uses the
programming job name and cannot be changed .
Click OK and a new Job Project will be created and opened for production programming
Click on RUN to start the programming of a board

Programming eNVM
The eNVM is a user non-volatile flash memory that can be programmed independently. There is two
methods to program eNVM:

Programming eNVM in SoftConsole

To program HSS *.hex file on FPGA:

Prepare the hardware see Hardware Setup
Open SoftConsole software as administrator, if it is not done yet.
Select correct directory as workspace directory and import hart-software-services source code.
Right click on the hart-software-services and click on Build Project, if it is not done yet. For
more information see Hart Software Services (HSS)
Click on Run > External Tools > Polarfire SoC program non-secure boot-mode 1

Programming eNVM in Flashpro Express

The HSS generated hex file can be attached to bitstream file. For more information see Design Flow

To program the eNVM in Flashpro Express see Using FlashPro Express

SD-Boot mode

This module supports SD card boot and JTAG boot mode. The selection between them will be done in
HSS, so there is no need to select the boot mode via Dip Switches .

Prepare SD card as follows for SD card boot mode:

1.
2.
3.

4.

a.

i.

b.

i.

1.
a.

b.
c.

2.
3.
4.

a.

Extract SD_Card.zip file
Now there is a image file (SD_Card.img)
Alternative SD card can be written via or softwares in Windows win32diskimager balenaEtcher
OS.
In the case of writing image file in linux there are two commands to write image file on the SD
card after mounting SD card in the host linux same as WSL:

bmaptool copy --nobmap <Path of image file *.img> /dev/sdX

After mounting the SD card in linux the name of SD card recognized via
"lsblk" command. For example SD card name can be sda or sdb.

dd if=<Path of image file *.img> of=/dev/sdX

After mounting the SD card in linux the name of SD card recognized via lsblk
command. For example SD card name can be sda or sdb.

JTAG

Not used on this example.

Usage
Prepare HW like described on section Hardware Setup
Power on PCB

UART

Open two serial console for HSS and Linux console (e.g. PuTTY)
Select COM Port of linux console (UART1)

Select COM port of HSS console (UART0)
Speed for both consoles : 115200

Press reset button
Console output depends on used software project, see Application
HSS console (UART0):

This console can be monitored by user , to know some additional information same as
SD card status (If SD card by booting is detected or not) , U54 cores status or memory
size ,

Win OS: see device manager

Linux OS: see dmesg | grep tty (UART is *USB1)

https://win32diskimager.org/
https://etcher.balena.io/

4.
a.

5.
a.

b.

Linux Console (UART1):
Login data:

tem0007 login: root

You can use Linux shell now.

i2cdetect -l (check I2C Bus)
ifconfig -a (ETH0 check)
lsusb (USB check)

Note: Wait until Linux boot finished

5.

b.

System Design - Libero

Block Design
The Block Design of a board variant or revision may differ slightly depending on the assembly variant.

Block Design

HPS Interfaces

Activated interfaces:

Type Note

DDR --

EMAC0 --

GPIO1 --

GPIO2 --

I2C0 --

I2C1 --

SPI0 --

QSPI --

SDMMC --

UART0 --

UART1 --

USB --

Constraints

TEM0007_Bank_Voltage.pdc

set_iobank -bank_name Bank0 \
 -vcci 1.80 \
 -fixed true \
 -update_iostd true

set_iobank -bank_name Bank1 \
 -vcci 3.30 \
 -fixed true \
 -update_iostd true

set_iobank -bank_name Bank4 \
 -vcci 3.30 \
 -fixed true \
 -update_iostd true

TEM0007_Clock.pdc

set_io -port_name REF_CLK_PAD_P \
 -pin_name J19 \
 -DIRECTION INPUT

set_io -port_name REF_CLK_PAD_N \
 -pin_name J20 \
 -DIRECTION INPUT

TEM0007_GPIOs.pdc

set_io -port_name GPIO_2_2 \
 -pin_name D9 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name GPIO_2_3 \
 -pin_name D6 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name GPIO_2_4 \
 -pin_name C6 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name GPIO_2_7 \
 -pin_name B5 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name GPIO_2_8 \
 -pin_name C5 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name GPIO_2_9 \
 -pin_name C4 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name GPIO_2_11 \
 -pin_name F16 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name GPIO_2_12 \
 -pin_name D14 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name GPIO_2_13 \
 -pin_name E14 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name GPIO_2_14 \
 -pin_name B4 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

TEM0007_MAC.pdc

set_io -port_name MAC_0_MDC \
 -pin_name H6 \
 -fixed true \
 -DIRECTION OUTPUT \
 -io_std LVCMOS33

set_io -port_name MAC_0_MDIO \
 -pin_name J3 \
 -fixed true \
 -DIRECTION INOUT \
 -io_std LVCMOS33

TEM0007_MMUART0.pdc

 set_io -port_name MMUART_0_TXD \
 -pin_name C2 \
 -fixed true \
 -DIRECTION OUTPUT \
 -io_std LVCMOS33

set_io -port_name MMUART_0_RXD \
 -pin_name D3 \
 -fixed true \
 -DIRECTION INPUT \
 -io_std LVCMOS33

TEM0007_MMUART1.pdc

set_io -port_name MMUART_1_TXD \
 -pin_name H5 \
 -fixed true \
 -DIRECTION OUTPUT \
 -io_std LVCMOS33

set_io -port_name MMUART_1_RXD \
 -pin_name H2 \
 -fixed true \
 -DIRECTION INPUT \
 -io_std LVCMOS33

TEM0007_Peripheral.pdc

set_io -port_name USER_PWM0 \
 -pin_name D7 \
 -fixed true \
 -io_std LVCMOS33 \
 -RES_PULL Down \
 -DIRECTION OUTPUT

set_io -port_name USER_IN0 \
 -pin_name V19 \
 -fixed true \
 -DIRECTION INPUT

set_io -port_name USER_OUT0 \
 -pin_name AB19 \
 -fixed true \
 -DIRECTION OUTPUT

JM2-Pin73/ JB2-Pin74 / B13_L16_N (Suitable for modified TE0703)
#set_io -port_name RESETN \
 -pin_name H13 \
 -fixed true \
 -io_std LVTTL \
 -CLAMP_DIODE OFF \
 -RES_PULL Up \
 -DIRECTION INPUT

JM2-Pin55 TEM0007 / JB2-Pin56 (SRST) TEB2000 / B13_L9_P
set_io -port_name RESETN \
 -pin_name E15 \
 -fixed true \
 -io_std LVTTL \
 -CLAMP_DIODE OFF \
 -RES_PULL Up \
 -DIRECTION INPUT

TEM0007_QSPI.pdc

set_io -port_name QSPI_CLK \
 -pin_name C10 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name QSPI_DATA_0 \
 -pin_name D13 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name QSPI_DATA_1 \
 -pin_name B12 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name QSPI_DATA_2 \
 -pin_name C9 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name QSPI_DATA_3 \
 -pin_name C12 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

set_io -port_name QSPI_SEL \
 -pin_name A13 \
 -fixed true \
 -io_std LVCMOS33 \
 -DIRECTION INOUT

1.

MPFS_TEM0007_BASE_DESIGN_derived_constraints.sdc

create_generated_clock -name {CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK
/PF_CCC_C0_0/pll_inst_0/OUT0} -multiply_by 5 -source [get_pins {
CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/REF_CLK_0 }
] -phase 0 [get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0
/pll_inst_0/OUT0 }]
create_generated_clock -name {CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK
/PF_CCC_C0_0/pll_inst_0/OUT1} -multiply_by 5 -source [get_pins {
CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/REF_CLK_0 }
] -phase 0 [get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0
/pll_inst_0/OUT1 }]
create_generated_clock -name {CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK
/PF_CCC_C0_0/pll_inst_0/OUT2} -multiply_by 5 -source [get_pins {
CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/REF_CLK_0 }
] -phase 0 [get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0
/pll_inst_0/OUT2 }]
create_generated_clock -name {CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK
/PF_CCC_C0_0/pll_inst_0/OUT3} -multiply_by 2 -source [get_pins {
CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/REF_CLK_0 }
] -phase 0 [get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0
/pll_inst_0/OUT3 }]
create_generated_clock -name {CLOCKS_AND_RESETS_inst_0/PF_CLK_DIV_C1_0
/PF_CLK_DIV_C1_0/I_CD/Y_DIV} -edges {1 7 11} -source [get_pins {
CLOCKS_AND_RESETS_inst_0/PF_CLK_DIV_C1_0/PF_CLK_DIV_C1_0/I_CD/A }] [
get_pins { CLOCKS_AND_RESETS_inst_0/PF_CLK_DIV_C1_0/PF_CLK_DIV_C1_0/I_CD
/Y_DIV }]
set_false_path -through [get_nets { FIC_0_PERIPHERALS_1
/DMA_INITIATOR_inst_0/ARESETN* }]
set_false_path -through [get_nets { FIC_0_PERIPHERALS_1
/FIC0_INITIATOR_inst_0/ARESETN* }]

Software Design - SoftConsole

Application
Template location: <project folder>/softconsole_source/

Hart Software Services (HSS)
 Hart Software Services (HSS) code on PolarFire SoC, is comprised of two portions:

A superloop monitor running on the E51 minion processor, which receives requests from the
individual U54 application processors to perform certain services on their behalf.
A Machine-Mode software interrupt trap handler, which allows the E51 to send messages to the
U54s, and request them to perform certain functions for it related to rebooting a U54.

The HSS performs boot and system monitoring functions for PolarFire SoC. The HSS is compressed
(DEFLATE) and stored in eNVM. On power-up, a small decompressor wrapper inflates the HSS from
eNVM flash to L2-Scratchpad memory and starts the HSS.

Creating HSS workspace in SoftConsole

1.

2.
3.

4.
5.

6.
7.

8.
9.

1.
2.
3.

4.

5.

6.

7.

Download the test board design zip file in the following path : TEM0007 "Test Board" Reference
Design
Unzip the test board zip file
Copy the HSS folder (hart-software-services-<HSS version>) from softconsole_source folder in
the SoftConsole workspace folder
Open SoftConsole software as administrator
Select correct directory as workspace directory. The workspace folder must consist of hart-

 folder. The software-services-<HSS version> project hart-software-services-<HSS version>
can be imported in the workspace as an Existing project.
Left click on folderboard
There is created already a subfolder for TEM0007 module and HSS is ready to be compiled as
shown:

Right click on hart-software-services-<HSS version> and click on Build project to compile it.
It is ready to program created hex file on the Polarfire SoC. See Programming eNVM

Note that HSS can be changed for every TEM0007 variant. Therefore the hex file for every variant is
created and saved in the following path of test design folder separately: (prebuilt<project folder>/
/soctware/<short name of the module variant>)

Creating XML file in PolarfireSoC MSS Configurator Software

To create HSS file for a desired module variant the saved MSS configuration xml file in "<softconsole
" board/TEM0007/soc_fpgs_design/xml/workspace folder>/ hart-software-services-<HSS version>/

must be matched for its related xml file. To do it:

Open the PolarfireSoC MSS Configurator software.
Click on ProjectOpen
Select the generated file that is saved in the "TEM0007_MSS.cfg <project folder>/prebuilt

" folder./mss/<short name of the module variant>
Click on Generate icon. It will be opened a window to enter the desired path for generated xml
file.

MSS configuration xml file is generated. This file must be imported in SoftConsole software. To
import this file copy the generated MSS configuration xml file and replace it with previous xml
file in the following path : "<softconsole workspace folder>/ hart-software-services-<HSS

" version>/boards/TEM0007/soc_fpga_design/xml
Right click on the project in SoftConsole software and click on Clean Project.

https://shop.trenz-electronic.de/de/Download/?path=Trenz_Electronic/Modules_and_Module_Carriers/4x5/TEM0007/Reference_Design
https://shop.trenz-electronic.de/de/Download/?path=Trenz_Electronic/Modules_and_Module_Carriers/4x5/TEM0007/Reference_Design

7.

8.

9.

10.

In SoftConsole software delete all configuration header files in "<softconsole workspace
" foldefolder>/ hart-software-services-<HSS version>/boards/TEM0007/fpga_design-config

r.

 again and click on Build Project to compile the Right click on the project in SoftConsole software
project.
The new configuration header files will be generated again by the python script in "<softconsole
workspace folder>/ hart-software-services-<HSS version>/tools/polarfire-soc-

" folder. The generated hex file configuration-generator/mpfs_configuration_generator.py
can be found in the "<softconsole workspace folder>/ hart-software-services-<HSS

" folder.version>/Default
This new hex file must be replaced in Libero to generate new Bitstream file, if this hex file
should be attached in Bitstream file. See Libero SoC

 Note that this hex file can be programmed in eNVM in SoftConsole directly. See Programming
eNVM in SoftConsole

Software Design - Yocto

The host pc must be prepared for using the yocto. For more information about host pc setup for yocto
and the required packets please refer to System Requirements

Trenz electronic has developed his own BSP for Microchip devices same as polarfire soc in Yocto. In the
following will be explained the folders in detail.

meta-trenz-polarfire-bsp Folder Description

recipes-apps* Consists of start up application for executing of
init.sh by booting. More application can be saved
in this folder.

recipes-bsp Consists of uboot required files same as *.
bbappend files, device tree and etc.

recipes-core Consists of *.bb file for Trenz defined image
version. This file consists of required packets or
files that must be installed.

recipes-kernel Consists of kernel required files same as *.
bbappend files, device tree, config files and etc.

recipes-tools Consists of a *.bbappend file.

tools Consists of manifest xml file to define meta data
that are required.

wic Consists of *.wks file that describes disk image
properties.

*Note: In this version is not used.

https://docs.yoctoproject.org/4.0.5/ref-manual/system-requirements.html#required-packages-for-the-build-host

1.

2.

3.

4.

In the following table exists more information about required packets and supported version.

Meta data Supported Version Description

meta-riscv Kirkstone

openembedded-core Kirkstone

meta-openembedded Kirkstone

meta-polarfire-soc-yocto-
bsp

2022.11

Trenz BSP contains of a shell script. If this shell script is executed , all required processes for making a
linux image file will be executed automatically. The user needs only to write the generated image file on
the SD card. To prepare the image file :

Create a new folder (for example TEM0007) in host linux (here Ubuntu18.04 and Ubuntu 20.04
have been tested)
Download the test board design as zip file (See) and save meta-trenz-polarefile-bsp Download
BSP folder from " " folder in the created folder. (for example <project folder>/os/yocto/
TEM0007)
Go to the created folder (for example TEM0007) that meta-trenz-polarfire-bsp is saved and
execute its shell script as shown:

 . ./meta-trenz-polarfire-bsp/trenz_polarfire_setup.sh

Note: The shell script must be executed in created new folder (for example TEM0007) *

that has bsp folder saved in it.
After compiling image file *.img and its converted zip file *.zip will be saved in trenz bsp folder:

 " <trenz BSP folder>/prebuilt/boot/yocto/SD_Card.img "
 " <trenz BSP folder>/prebuilt/boot/yocto/SD_Card.zip "

U-Boot
File location: /recipes-bsp/u-boot/ <trenz BSP folder>

Changes:

CONFIG_PHY_MARVELL=y
CONFIG_DEFAULT_DEVICE_TREE="tem0007"
CONFIG_DEFAULT_FDT_FILE="tem0007.dtb"
CONFIG_OF_LIST="tem0007"
CONFIG_DM_GPIO=y
CONFIG_CMD_GPIO=y
CONFIG_LOG=y
CONFIG_LOG_MAX_LEVEL=y
CONFIG_LOG_CONSOLE=y
CONFIG_NVMEM=y to be able to read MAC vom EEPROM
CONFIG_DM_RTC=y

Device Tree

U-boot Device Tree

tem0007.dtsi

// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/*
 * Copyright (C) 2020 Microchip Technology Inc.
 * Padmarao Begari <padmarao.begari@microchip.com>
 */

/ {
 aliases {
 cpu1 = &cpu1;
 cpu2 = &cpu2;
 cpu3 = &cpu3;
 cpu4 = &cpu4;
 };
};

tem0007.dts

// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
 * Copyright (C) 2021 Microchip Technology Inc.
 * Padmarao Begari <padmarao.begari@microchip.com>
 */

/dts-v1/;

#include "microchip-mpfs.dtsi"
#include "dt-bindings/gpio/gpio.h"

/* Clock frequency (in Hz) of the rtcclk */
#define RTCCLK_FREQ 1000000

/ {
 model = "Microchip PolarFire-SoC Icicle Kit";
 compatible = "microchip,mpfs-icicle-kit", "microchip,mpfs";

 aliases {
 serial1 = &uart1;
 ethernet0 = &mac0;
 spi0 = &qspi;
 };

 chosen {
 stdout-path = "serial1";
 };

 cpus {
 timebase-frequency = <RTCCLK_FREQ>;
 };

 ddrc_cache: memory@80000000 {
 device_type = "memory";
 reg = <0x0 0x80000000 0x0 0x40000000>;
 clocks = <&clkcfg CLK_DDRC>;
 status = "okay";
 };

 usb_phy: usb_phy {
 #phy-cells = <0>;
 compatible = "usb-nop-xceiv";

 reset-gpios = <&gpio1 17 GPIO_ACTIVE_LOW>;
 reset-names = "OTG_RST";
 };
};

&uart1 {
 status = "okay";
};

&mmc {
 status = "okay";
 bus-width = <4>;
 disable-wp;
 cap-mmc-highspeed;
 cap-sd-highspeed;
 cd-debounce-delay-ms;
 card-detect-delay = <200>;
 // mmc-ddr-1_8v;
 // mmc-hs200-1_8v;
 sd-uhs-sdr12;
 sd-uhs-sdr25;
 sd-uhs-sdr50;
 sd-uhs-sdr104;
};

&i2c1 {
 status = "okay";
 #address-cells = <1>;
 #size-cells = <0>;
 eeprom: eeprom@50 {
 compatible = "microchip,24aa025", "atmel,24c02";
 //compatible = "atmel,24c02";
 reg = <0x50>;
 #address-cells = <1>;
 #size-cells = <1>;
 eth0_addr: eth-mac-addr@FA {
 reg = <0xFA 0x06>;
 };
 };
};

&refclk {
 clock-frequency = <125000000>;
};

&mac1 {
 status = "disabled";
};

&mac0 {
 status = "okay";
 phy-mode = "sgmii";
 nvmem-cells = <ð0_addr>;
 nvmem-cell-names = "mac-address";
 phy-handle = <&phy0>;
 phy0: ethernet-phy@1 {
 device-type = "ethernet-phy";
 reg = <1>;
 reset-names = "ETH_RST";
 reset-gpios = <&gpio1 16 GPIO_ACTIVE_LOW>;
 };

};

&qspi {
 status = "okay";
 num-cs = <1>;
 flash0: spi-nor@0 {
 compatible = "spi-nor";
 reg = <0x0>;
 spi-tx-bus-width = <4>;
 spi-rx-bus-width = <4>;
 spi-max-frequency = <20000000>;
 spi-cpol;
 spi-cpha;
 };
};

&usb {
 status = "okay";
 dr_mode = "otg";
 // dr_mode = "host";
 phys = <&usb_phy>;
};

Kernel Device Tree

tem0007.dts

// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Copyright (c) 2020-2021 Microchip Technology Inc */

/dts-v1/;

#include "mpfs.dtsi"

#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/phy/phy.h>

/* Clock frequency (in Hz) of the rtcclk */
#define MTIMER_FREQ 1000000

/ {
 #address-cells = <2>;
 #size-cells = <2>;

 model = "Trenz TEM0007";
 compatible = "trenz,tem0007","microchip,mpfs";

 aliases {
 ethernet0 = &mac0;
 serial0 = &mmuart0;
 serial1 = &mmuart1;
 serial2 = &mmuart2;
 serial3 = &mmuart3;
 serial4 = &mmuart4;

 };

 chosen {
 stdout-path = "serial1:115200n8";
 };

 cpus {
 timebase-frequency = <MTIMER_FREQ>;
 };

 //**//

 ddrc_cache: memory@80000000 {
 device_type = "memory";
 reg = <0x0 0x80000000 0x0 0x40000000>;
 status = "okay";
 };

 reserved-memory {
 #address-cells = <2>;
 #size-cells = <2>;

 ranges;

 fabricbuf0ddrc: buffer@A0000000 {
 compatible = "shared-dma-pool";
 reg = <0x0 0xA0000000 0x0 0x2000000>;
 no-map;
 };
 };

 udmabuf0 {
 compatible = "ikwzm,u-dma-buf";
 device-name = "udmabuf-ddr-c0";
 minor-number = <0>;
 size = <0x0 0x2000000>;
 memory-region = <&fabricbuf0ddrc>;
 sync-mode = <3>;
 };

 //**//

 usb_phy: usb_phy {
 #phy-cells = <0>;
 compatible = "usb-nop-xceiv";
 reset-gpios = <&gpio1 17 GPIO_ACTIVE_LOW>;
 reset-names = "OTG_RST";
 };

 soc {
 dma-ranges = <0 0 0 0 0x40 0>;
 };
};

&gpio1 {
 status = "okay";
};

&gpio2 {
 interrupts = <53>, <53>, <53>, <53>,
 <53>, <53>, <53>, <53>,
 <53>, <53>, <53>, <53>,
 <53>, <53>, <53>, <53>,
 <53>, <53>, <53>, <53>,
 <53>, <53>, <53>, <53>,
 <53>, <53>, <53>, <53>,
 <53>, <53>, <53>, <53>;
 status = "okay";
};

&i2c0 {
 status = "okay";
};

&i2c1 {
 status = "okay";
 #address-cells = <1>;
 #size-cells = <0>;

 eeprom: eeprom@50 {
 compatible = "microchip,24aa025", "atmel,24c02";
 //compatible = "atmel,24c02";
 reg = <0x50>;
 #address-cells = <1>;
 #size-cells = <1>;
 eth0_addr: eth-mac-addr@FA {
 reg = <0xFA 0x06>;
 };
 };
};

&mac0 {
 status = "okay";
 phy-mode = "sgmii";
 nvmem-cells = <ð0_addr>;
 nvmem-cell-names = "mac-address";

 phy-handle = <&phy0>;
 phy0: ethernet-phy@1 {
 device-type = "ethernet-phy";
 reg = <1>;
 reset-names = "ETH_RST";
 reset-gpios = <&gpio1 16 GPIO_ACTIVE_LOW>;
 };
};

&mbox {
 status = "okay";
};

&mmc {
 status = "okay";
 bus-width = <4>;
 disable-wp;
 cap-sd-highspeed;
 cap-mmc-highspeed;
 // mmc-ddr-1_8v;

 // mmc-hs200-1_8v;
 sd-uhs-sdr12;
 sd-uhs-sdr25;
 sd-uhs-sdr50;
 sd-uhs-sdr104;
};

&mmuart1 {
 status = "okay";
};

&mmuart2 {
 status = "okay";
};

&mmuart3 {
 status = "okay";
};

&mmuart4 {
 status = "okay";
};

&qspi {
 status = "okay";
 num-cs = <1>;
};

&refclk {
 clock-frequency = <125000000>;
};

&spi0 {
 status = "okay";
};

&usb {
 status = "okay";
 dr_mode = "otg";
 // dr_mode = "host";
 phys = <&usb_phy>;
};

&syscontroller {
 status = "okay";
};

Kernel
File location: <trenz BSP folder>/recipes-kernel/linux/

Changes:

CONFIG_CMDLINE_BOOL=y
CONFIG_CMDLINE="earlycon=sbi root=/dev/mmcblk0p3 rootwait uio_pdrv_genirq.
of_id=generic-uio"
CONFIG_EEPROM_AT24=y
CONFIG_NVMEM=y
CONFIG_NVMEM_SYS=y
CONFIG_REGMAP_I2C=y
CONFIG_MARVELL_PHY=y
CONFIG_LEDS_GPIO=y
CONFIG_LEDS_CLASS=y
CONFIG_NEW_LEDS=y
CONFIG_GPIOLIB=y
CONFIG_USB_MUSB_HOST=y
CONFIG_USB_MUSB_DUAL_ROLE=y
CONFIG_MTD_SPI_NOR_USE_4K_SECTORS=n
CONFIG_MTD_UBI=y
CONFIG_MTD_CMDLINE_PARTS=y
CONFIG_UBIFS_FS=y
CONFIG_MTD_SPI_NOR=y
CONFIG_OF_OVERLAY=y
CONFIG_OF_CONFIGFS=y
CONFIG_MFD_SENSEHAT_CORE=m
CONFIG_INPUT_JOYDEV=m
CONFIG_INPUT_JOYSTICK=y
CONFIG_JOYSTICK_SENSEHAT=m
CONFIG_AUXDISPLAY=y
CONFIG_SENSEHAT_DISPLAY=m
CONFIG_HTS221=m
CONFIG_IIO_ST_PRESS=m
CONFIG_IIO_ST_LSM6DSX=m
CONFIG_IIO_ST_MAGN_3AXIS=m
#CONFIG_MUSB_PIO_ONLY is not set
CONFIG_USB_INVENTRA_DMA=y

Images
Image recipe for minimal console image

File location: <trenz BSP folder>/recipes-core/images/

Image recipes:

te-image-minimal.bb: create minimal linux image

Added packages/recipes:

startup
iputils-ping
expect
rsync
rng-tools
iperf3
devmem2
can-utils
usbutils
pciutils
polarfire-soc-linux-examples
dt-overlay-mchp
libgpiod
libgpiod-tools
libgpiod-dev
i2c-tools
vim vim-vimrc
net-tools
htop
iw
python3

python3-pip
python3-flask
python3-flask-dev
python3-werkzeug
libudev
glib-2.0
sqlite3
dtc
cmake
tar
wget
zip
mtd-utils
mtd-utils-ubifs

Rootfs
Used filesystem: Root file system (RootFS)

Appx. A: Change History and Legal Notices

Document Change History
To get content of older revision got to "Change History" of this page and select older document revision
number.

Date Document Revision Authors Description

Release for more
variants
The design is
matched to new
carrier board
TEB2000.

Error

renderi

ng

macro

'page-

info'

Ambiguo

us

method

overload

ing for

method

jdk.

proxy27

9.$Proxy

Error

renderi

ng

macro

'page-

info'

Ambiguo

us

method

overload

ing for

method

jdk.

proxy27

9.$Proxy

Error

renderi

ng

macro

'page-

info'

Ambiguo

us

method

overload

ing for

method

jdk.

proxy27

9.$Proxy

4022#ha

sConten

tLevelPe

rmission

.

Cannot

resolve

which

method

to

invoke

for [null,

class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.

pages.

Page]

due to

overlapp

ing

prototyp

es

between

:

[interfac

e com.

atlassian

.

confluen

ce.user.

Conflue

nceUser

4022#ha

sConten

tLevelPe

rmission

.

Cannot

resolve

which

method

to

invoke

for [null,

class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.

pages.

Page]

due to

overlapp

ing

prototyp

es

between

:

[interfac

e com.

atlassian

.

confluen

ce.user.

Conflue

nceUser

4022#ha

sConten

tLevelPe

rmission

.

Cannot

resolve

which

method

to

invoke

for [null,

class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.

pages.

Page]

due to

overlapp

ing

prototyp

es

between

:

[interfac

e com.

atlassian

.

confluen

ce.user.

Conflue

nceUser

2023-11-13 v.57 Mohsen Chamanbaz
Clock frequency of
LPDDR4 reduced to
500MHz.
USB and ethernet
phys will be reset
while booting.

2023-09-08 v.56 Mohsen Chamanbaz
Update download
path

, class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.core.

Content

EntityOb

ject]

[interfac

e com.

atlassian

.user.

User,

class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.core.

Content

EntityOb

ject]

, class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.core.

Content

EntityOb

ject]

[interfac

e com.

atlassian

.user.

User,

class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.core.

Content

EntityOb

ject]

, class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.core.

Content

EntityOb

ject]

[interfac

e com.

atlassian

.user.

User,

class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.core.

Content

EntityOb

ject]

2023-09-07 v.54 Mohsen Chamanbaz
Initial release v2023.
1

-- all --

Error

renderi

ng

macro

'page-

info'

Ambiguo

us

method

overload

ing for

method

jdk.

proxy27

9.$Proxy

4022#ha

sConten

tLevelPe

rmission

.

Cannot

resolve

which

method

to

invoke

for [null,

class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.

pages.

Page]

due to

overlapp

ing

prototyp

es

between

:

[interfac

e com.

atlassian

.

confluen

ce.user.

Conflue

nceUser

, class

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.core.

Content

EntityOb

ject]

[interfac

e com.

atlassian

.user.

User,

class

Document change history

Legal Notices

Data Privacy
Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-
Privacy

Document Warranty
The material contained in this document is provided “as is” and is subject to being changed at any time
without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this
document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all
warranties, either express or implied, with regard to this document and any information contained herein,
including but not limited to the implied warranties of merchantability, fitness for a particular purpose or
non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or
consequential damages in connection with the furnishing, use, or performance of this document or of any
information contained herein.

Limitation of Liability
In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable
for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or
business interruption) arising out of the use, inability to use, or the results of use of this document, any
documents linked to this document, or the materials or information contained at any or all such
documents. If your use of the materials or information from this document results in the need for
servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice
No part of this manual may be reproduced in any form or by any means (including electronic storage and
retrieval or translation into a foreign language) without prior agreement and written consent from Trenz
Electronic.

java.

lang.

String,

class

com.

atlassian

.

confluen

ce.core.

Content

EntityOb

ject]

https://www.trenz-electronic.de/en/Data-protection-Privacy
https://www.trenz-electronic.de/en/Data-protection-Privacy

Technology Licenses
The hardware / firmware / software described in this document are furnished under a license and may be
used /modified / copied only in accordance with the terms of such license.

Environmental Protection
To confront directly with the responsibility toward the environment, the global community and eventually
also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall
be conscious of their social responsibility and contribute to the preservation of our common living space.
That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE
REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called
downstream user in the sense of . The products we supply to you are solely non-chemical REACH
products (goods). Moreover and under normal and reasonably foreseeable circumstances of application,
the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither
register nor to provide safety data sheet. According to present knowledge and to best of our knowledge,
no are contained in our products. SVHC (Substances of Very High Concern) on the Candidate List
Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH -
Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be
classified as SVHC by the .European Chemicals Agency (ECHA)

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and
distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the
European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment
(WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste
electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and
electronic equipment separately. By the 13 August 2005, Member States shall have ensured that
systems are set up allowing final holders and distributors to return waste electrical and electronic
equipment at least free of charge. Member States shall ensure the availability and accessibility of the
necessary collection facilities. Separate collection is the precondition to ensure specific treatment and
recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of
protection of human health and the environment in the European Union. Consumers have to actively
contribute to the success of such collection and the return of waste electrical and electronic equipment.
Presence of hazardous substances in electrical and electronic equipment results in potential effects on
the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates
separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.

proxy279.$Proxy4022#hasContentLevelPermission. Cannot resolve which method to

invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due

http://guidance.echa.europa.eu/
https://echa.europa.eu/candidate-list-table
http://www.echa.europa.eu/

to overlapping prototypes between: [interface com.atlassian.confluence.user.

ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.

ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class

com.atlassian.confluence.core.ContentEntityObject]

	TEM0007 Test Board

