LED Blinky Tutorial

FPGA's and SoC can be used for many more advanced functions as making a LED to blink. However "LED Blinky" is considered a "Hello World" for
systems that can not otherwise say Hello.

Requirements

To make LED to Blink (under user control) following requirements are needed:

. Some Programmable Device: MCU, CPU, CPLD, FPGA, SoC

. Working Programming or Configuration interface or means to boot the Programmable Device
. Timing Source (Clock), can be external or internal, must be be enabled

Active Power to all required power domains of the Programmable Device

. Release of main Reset

LED Connected to some user controllable I/O Port of the Programmable Device

. LED must be assembled with right polarity and proper current limiting resistor

. Valid I/O Voltage applied to the I/O Bank with the user LED

ONOUTAWN

If any of those requirements are missing you may encounter problems with LED Blinky.

©

Programmable Device

Timing Source

A timing source or Clock is required to make an LED Blink, without reference to time or known Clock source, we can only make LED to be permanently ON
or OFF.

If we do not know how to access the time/clock source or if we are not sure if the clock is enabled and running we have an potential problem and we can
not proceed to the LED Blinky unless we have identified an active/enabled accessible clock source we can use for timing.

FPGA Devices

GT Clock
Gigabit Transceiver Clock may also be used as FPGA Fabric clock.
IBUFDSGTL
si5338_dko [Jl| =cx_m o -

IBUF_D5_ODIv2[0:0]

Litility B fer

Clock buffers for GT Clock in Xilinx 7 Series Devices (example from TE0745 design)

GTHE_BUF1

GT_BUFGL
_ IBUF_OUTC: 0] b =
si5338_dk1 [Cp——il|=cLk 18 0 o0 .
GT_CE[0:0]
Utility Buffer
- m{BUFG_GT_CEMASK[0:0] .
" -] BUFG_GT_(0I[0!0] e
miBUFG_GT_CLRMASK[0:0]
dout]0: 0] m{BUFG_GT_CIV[2:0]
Constant Utility Buffer

Clock buffers for GT Clock in Ultrascale Devices (example from TE0841 design)

ZYNQ Devices

In Zyng System the main System Clock is connected PS (Processing Subsystem) and is not directly available to the PL (Programmable Logic - FPGA)
unless the PS has enabled it during FSBL boot process. So if we have a generic Zyng Board then we can not expect to have clocks available to the FPGA
until the Processing system has provided them. There may be clocks available to the PL that are active when the PS is not booted but this not a
requirement.

If our goal is to make a LED to blink (from PL in Zynq Device), then the safest way is to use FPGA Configuration Master Clock this clock is always
available and accessible in the same way, we do not need to know any specifics to the board we have and we do not depend on PS init done by FSBL.

ZYNQ MPSoC Devices

VIO

clk
COUNTER32 probe_in0[31:0]
ik QELo] probe_in1[0:0]
Bihary Counter (Pre-Productio VIO (Virtual I';E#g?“m“” (Beta)
STARTUP Din[31:0] Dout[0:0]
Slice (Pre-Production)
»USRDONED
»USRDONETS uger_r‘ﬁem zyng_ultra_ps_e_0
STARTUPE3 Primitive Wrapper (Beta) M_AXJ_HPI\-(:’I(I;PEi
FI'_M+

ihpmO_lpd_aclk

pl_pmu_gpi[31:0] pl_resetni:
aib_pmu_afifm_fpd_ack pmu_pl_gpa[31:0]
aib_pmu_afifm_Ipd_ack ® pmu_aib_afifm_fpd_req

mpmu_error_from_pl[3:0] U H:raS CALE+ pmu_aib_afifm_Ipd_req

pmu_error_to_pl[46:0]
pl_dkD

— T
ZYNQ UltraScale+ MPSoc (Beta)

This design blinks a LED connected to DONE pin and also a VIO Pin, on any Zynq MPSoC device, without using any clocks provided by the externally,
and without the use of PS supplied clocks. LED Toggle rate is about 2 Hz.

Valid I/O Voltage

It is very common that modern Integrated Circuits have separate power supply pins for I/O Voltage. That voltage if applied control the output levels from
the device, if the Voltage is too low or missing then it is not possible to have enough current from the device /0O Pin to make a LED Lit.

FPGA and SoC SoM's can have fixed and user controlled Voltages for the I/O Banks. It is important to assure that the I/O Bank that controls the LED has a
valid Supply Voltage applied.

1 NOTE: Missing VCCIO Voltage will not cause AXI GPIO to freeze, no matter if it is connected to MicroBlaze or Zynq Processing Block.

1 NOTE: Changing I/O Standard will not change the Bank Supply Voltage or enable it.

DONE LED

If there is on board LED directly connected to FPGA "DONE" output, then it is also possible to control it as long as it is possible to configure the FPGA (or
PL portion of Zyng). For Zynq the PS subsystem is not needed if configuration is done via JTAG.

The good thing about Done LED is that if it is available it has fixed location, there is no need to assign it to some pin and it has fixed available power as
well. The tricky parts is that DONE output is controlled by FPGA Primitive so the code to control the Done LED is different from that of normal PL I/O
Controlled LED.

MIO LED

If there is a LED directly connected to lower MIO Bank of the Zynq then this LED is also always controllable, as this Bank has to be powered for the device
to boot. This LED can also be controlled if the PL portion of the Zynq is not configured or even un-powered.

VIO LED

This is an option that is always available as long as we have JTAG Connection to the PL.

4 £32¢c_demo - [Bi/SVN/cores/2016.1/F32C/TE0841/f32c_demoyvivado/f32c_demouxpr] - Vivado 2016.1 =@ = |
File Edit Flow Tools Window Layout View Help Q- Search commands
B‘| [7] E‘% ‘ b4 | ’ [ﬁ| ﬁ %| E L{-} 09 serial 1/0 Analyzer ~| o -3 \%\ | (%% Dashboard + | ﬂ| (€3] write_bitstream Complete
| Hardware Manager - localhostyxilinx_tcf/Digilent/25163300026aA x
Hardware — 0w X & hwila_l % |® hw_vies X] 0w =
5 g [
5 = |‘|’|». hw wio 1 - O=
§ MName Status Q. Name Value Activity ~ Direction VIO
= E- B locathost (1) Connected w| X F-ig foys ijGPIO_O[31:0] [H] 0000_0000 Input hw_vio_1
3| =-Ee xiinx_tcf{Digilent/251533000263A (1) Open]| e | Jput Jhw_vie_1]
= B@ wcku035_0 (3) Programmed ofl = e feys_iflocked [E] 1 Input hw_via_1
g SysMon (System Monitor) . T 4 mis feys_ifsimple_out[31:0] [H] 0000_000F 1+ Input hw_vio_1
S hw_ila_1 (fsys_ifla_UART) O Idle 8| wm kg foys_ifsimple_in[31:0] [H] D000_00DD - Output hw_vio_1
& hw_vio_1 (fsys_i/ OK - Outputs Reset E iig RESET [Qutput hw_via_1
¢ Select LED Colors |i|
Debug Prob_e Properties T_ 0O Low Value Color: QGay -
=
= LED High Value Color: ° Red -
Source: MNETLIST EI
e : o]
Properties
Serial 1jO Links — 0O ¢ =
LY
= Mo content
Td Console | Messages | 47 IP Status', % Serial 1/0 Links | [5] Serial 1/0 Scans |
b,

e

Example of VIO LED, the SoM being used is Kintex UltraScale TE0841, the LED is implemented in F32C Softcore Bootloader that is waiting for Arduino
IDE to download a sketch. There is no limit for the number of virtual LED's. It is also possible to attach those VIO LED's to Zyng GPIO when using EMIO
mulitplexing, so the same GUI would show LED's controlled by Zynqg PS during boot or running Linux.

LED's on TE SoM's and Baseboards

MIO LED DONE LED User LED PL Notes

TEO710 | -
TEO711 | -
TEO712 - No* Yes* LED's are routed to PL I/O by System Control CPLD

TEO714 - No Yes One fixed LED on PL,1.8V or 3.3V I/O Voltage always present

TEO0720 MIO7 Yes Yes* System control CPLD can remap the LED functions during FSBL
TEO725 - Yes Yes LED's power always available

TEO729 @ MIO7 Yes -

TEO741 -

TEO0745 MIO -

TEO0782

TEO0841 - - Yes

Base User LED's Notes

TEO701 up to 8 max All LED's controlled by the System Control CPLD, some require user 1/O Bank voltage

TEO703 2% User supplied I/O Voltage

TEO705

TEO706 | O Can use RJ45 LED's as PL User LED's
TEBO0729

Blinky Examples

MicroBlaze MCS

TBD

MicroBlaze

TBD

Arduino F32C

F32C is an Open Source Soft Processor and SoC system that has ready to use support for Arduino IDE (using Arduino IDE package manager). More
details on installation into Arduino IDE can be found here. F32C project is hosted at github f32¢/f32c.

Requirements

Arduino IDE

F32C-Arduino packages installed (this will pull in cross-compiler and libs)
Supported SoM/Baseboard (see list in Table below)

UART Connection

JTAG Connection (or pre-programmed SoM)

http://www.nxlab.fer.hr/fpgarduino/
https://github.com/f32c/f32c

There is no need to have any Xilinx tools installed or any toolchain/compiler either.

SoM Variant Clock

RAM K

TEO0710 A35and larger 100MHz | 128

TEO711 A35and larger 100MHz | 128

TEO712 all 100MHz | 128
TEO0713 all 100MHz | 128
TEO714 100MHz | 128
TEO0720

TEQ722 100Mhz
TEO0723

TEO0725 A35 and larger 100MHz | 128

TEQ0726

TEO741 all 128

TE0841 KU35

100MHz | 128

Available

NOwW

NOW

NOwW

NOW

soon

soon

soon

NOwW

soon

NOW

NOwW

Test Setup Notes

TEO0701
TEO0701

TEO0701

TEO0790

TE0703 modified 1.8V

F32C_demo availability - designs and prebuilt images ready to be used with Arduino IDE.

Those SoM's are not currently integrated into the F32C-Arduino package manager, to use them please configure FPGA first, then select Generic FPGA

from Arduino IDE.

CLK_100MHz

clk_outl
clk_inl clk_out2
locked

sys_clock

Clocking Wizard

simple_out_LEDO

—E o

vector_led_v1_0 (Beta)
vio_MISC

clk

clk simple_out[31:0]k

f32c_v1_0 (Beta)

UARTOSR

GPO=

probe_in0[0:0]

probe_in1[0:0]

probe_in2[0:0]

il

probe_in3[31:0]

11

GPI<F VIO (Virtual Input/Output)
GPIO - ila_UART
UART_Monitor +
man_RXD probe0[0:0]
2=UART
n_TXD probel[0:0]

ART Interface Monitor (Beta)

ILA (Integrated Logic Analyzer)

D UARTO

Vivado IPI Block Diagram for the f32c_demo. F32C is clocked at 100MHz, Memory configuration set to 128KByte or larger for all devices that have enough
BRAM's, hit 0 of simple_out is connected to on-board LED. Optionally there may be FPGA debug IP Cores added, VIO and or ILA, in the example above is
Logic Analyzer added on the UART (using UART_MON IP Core). Baud rate 115200.

http://www.trenz-electronic.de/de/download/d0/Trenz_Electronic/d1/TE0710/d2/Reference%20Designs/d3/2016.1/d4/f32c_arduino.html
http://www.trenz-electronic.de/de/download/d0/Trenz_Electronic/d1/TE0711/d2/Reference%20Designs/d3/2016.1/d4/f32c_arduino.html
http://www.trenz-electronic.de/de/download/d0/Trenz_Electronic/d1/TE0712/d2/Reference%20Designs/d3/2016.1/d4/f32c_arduino.html
http://www.trenz-electronic.de/de/download/d0/Trenz_Electronic/d1/TE0725/d2/Reference%20Designs/d3/2016.1/d4/f32c_arduino.html
http://www.trenz-electronic.de/de/download/d0/Trenz_Electronic/d1/TE0741/d2/Reference%20Designs/d3/2016.1/d4/f32c_arduino.html
http://www.trenz-electronic.de/de/download/d0/Trenz_Electronic/d1/TE0841/d2/Reference%20Designs/d3/2016.1/d4/f32c_arduino.html

r o

Blink | Arduino 1.6.6 = | O] |-

File Edit Sketch Tools Help

S/ LED Blinky for FPGR LED Blinky Tutocrial by Trenz Electronic

S/ the setup function runs once when you press reset or power the board
vold setup() |
J/ Hot required for F32C simple output, those are alway3 output
pinMode (8, OUTPUT);
I}
S/ the leop function runs over and over again forever
void leoop() |
digitalWrice (8, HIGH): S/ turn the LED on (HIGH is the woltage lewvel)

m

delay (300} ; S/ wait for a hakf a second
digitalWrite (&8, LOW): S/ turn the LED off by making the voltage LOW
delay (500) S/ wait for a half second

L™

This is Arduino IDE screenshot after downloading LED Blinky sketch to F32C inside FPGA, selected generic FPGA board with 128K RAM and 100MHz
Clock. After download the on-board LED on the FPGA/SoC SoM will blink.

Troubleshooting Tips

If you are not sure to what pins the LED(s) are connected it is possible to create a "dummy" FPGA design with "UNUSED PIN PULLUP" option. If FPGA is
loaded with bitfile then any LED that is connected in active high configuration will be on, if the I/O Bank is powered. The internal pullup current is sufficient
to make most modern LED to be lit (not very bright).

If you know that there are LED's connected to FPGA and they do not get lit with "unused pin pullup" FPGA design, then most likely the 1/0 Bank with the
LED's has no power.

	LED Blinky Tutorial

