
1.

2.

Project Delivery - AMD devices

Quick Start

The most Trenz Electronic FPGA Reference Designs are TCL-script based project.

There are several options to create the Vivado project from the project delivery. These options are
described in .Vivado Projects - TE Reference Design

Since 2018.3 special "Module Selection Guide" is included into "_create_win_setup.cmd" and
"_create_linux_setup.sh"

Execute "_create_win_setup.cmd" or "_create_linux_setup.sh"
Select "Module Selection Guide" (press "0" and Enter)
Follow instructions

For manual configuration or addition command files for execution will be generated with
"_create_win_setup.cmd" on Windows OS and "_create_linux_setup.sh" on Linux OS. If you use our
prepared batch files for project creation do the following steps:

open "design_basic_settings.cmd/.sh" with text editor and set correct vivado path and board
part number (this will be also done automatically with the "Module Selection Guide"). How

 select the correct board part number is described on TE Board Part Files
run "vivado_create_project_guimode.cmd/.sh"

See for more details.Reference Design: Getting Started

If you need our Board Part files only, see .Board Part Installation

Zip Project Delivery

Zip Name Description

Description PCB
Name

Project
Name+
(opt.
Variant)

supported VIVADO VersionBuild
Version and Date

Example: te0720 - -test_board
(_noprebuilt)

- vivado_202
3.2

- build_1_202
31124235959

.zip

Last supported Release

Type or File Version Note

Vivado Design Suite 2023.2

Trenz Project Scripts 2023.2.3

For Problems, please check at first.Checklist / Troubleshoot

Table of contents

1 Quick Start
2 Zip Project Delivery

2.1 Zip Name Description
2.2 Last supported Release

2.2.1 Currently limitations of functionality
2.3 Directory structure
2.4 Command Files

2.4.1 Windows Command Files
2.4.2 Linux Command Files

2.5 TE-TCL-Extentions
3 Design Environment: Usage

3.1 Reference-Design: Getting Started
3.2 Basic Design Settings

3.2.1 Initialise TE-scripts on Vivado/LabTools
3.2.2 Use predefined TE-Script functions

3.3 Environment Variables
3.3.1 Local
3.3.2 Global

3.4 Hardware Design
3.4.1 Board Part Files

3.4.1.1 Structure Board Parts
3.4.1.2 Board Part or Design Extension
3.4.1.3 Board Part CSV Description

3.4.2 Block Design Conventions
3.4.3 XDC Conventions
3.4.4 Backup Block Design as TCL-File
3.4.5 Microblaze Firmware

3.5 Software Design
3.5.1 Vitis: Generate predefined software from libraries
3.5.2 VITIS: Create user software project

3.6 Advanced Usage
3.6.1 User defined board part csv file
3.6.2 User defined Settings
3.6.3 User defined TCL Script
3.6.4 SDSOC-Template
3.6.5 HDL-Design

4 Checklist / Troubleshoot
5 References
6 Document Change History
7 Table of contents

https://wiki.trenz-electronic.de/display/PD/Vivado+Projects+-+TE+Reference+Design
https://wiki.trenz-electronic.de/display/PD/TE+Board+Part+Files
https://wiki.trenz-electronic.de/display/PD/Project+Delivery#ProjectDelivery-Reference-Design:GettingStarted
https://wiki.trenz-electronic.de/display/PD/Installation
https://wiki.trenz-electronic.de/display/PD/Project+Delivery#ProjectDelivery-Checklist/Troubleshoot

Trenz
<board_series>_board_files.csv

1.4

Trenz apps_list.csv 2.6

Trenz zip_ignore_list.csv 1.0

Trenz mod_bd.csv 1.1 internal usage only

Trenz prod_cfg_list.csv 1.0 internal usage only

Trenz zip.info 1.0

Currently limitations of functionality

Important Note: QSPI Programming, see AR#00002 - QSPI Programming issues
Linux OS only: Vivado project generation fails:

Reason: Vivado need "en_US.UTF-8"
Workaround:Check language in ":$ locale" and change language in "/etc
/default/locale"

Linux OS only: HLS generated IPs creates : [IP_Flow 19-4318 IP] ACT warning
Reason: Missing Libs
Workaround: Install Libraries like GCC, clib6-dev....

Linux OS only: VITIS software generation failed.
Reason: start "gmake" failed, alias is not set on Ubuntu
Workaround: "sudo ln -s /usr/bin/make /usr/bin/gmake" to generate alias or
use SDK GUI to generate applications and boot files.

Linux OS only: Function, which used external programs.
Reason: Currently only set correctly for Win OS.
Workaround: Change TCL scripts program path manually.

Linux OS (Ubuntu 18.04) only: Project generation fails, in case language is not English
Workaround:Set LC_NUMERIC=en_US.UTF-8 for bash

WSL Ubuntu 22.04 xterm
install missing fonts with:

sudo apt-get install -y x11-xserver-utils
sudo apt-get install -y xfonts-base

Directory structure

File or Directory Type Description

<project folder> base directory Base directory with predefined
batch files (*.cmd) to generate
or open VIVADO-Project

<project folder>/block_design/ source Script to generate Block Design
in Vivado (*_bd.tcl). (optional)
Some board part designs used
subfolder
<board_file_shortname> with
Board Part specific Block
Design (*_bd.tcl).

<project folder>/board_files/ source Local board part files repository
and a list of available board part
files
(<board_series>_board_files.
csv)

<project folder>/board_files
/carrier_extension

source (Optional) Additional TCL-
Scripts to extend Board Part PS-
Preset with carrier board
specific settings.

https://wiki.trenz-electronic.de/pages/viewpage.action?pageId=105689937

<project folder>/console source folder with different console
command files. Use
_create_win_setup.cmd or
_create_linux_setup.sh to
generate files on top folder.

<project folder>/constraints/ source Project constrains (*.xdc).
Some board part designs used
subfolder
<board_file_shortname> with
additional constrains (*.xdc)

<project folder>/doc/ source Documentation

<project folder>/hdl/ source HDL-File and XCI-Files.
Advanced usage only!

<project folder>/firmware/ source ELF-File Location for
MicroBlaze Firmware.
Additional sub folder is used for
MicroBlaze identification.

<project folder>/ip_lib/ source Local Vivado IP repository

<project folder>/misc/ source (Optional) Directory with
additional sources

<project folder>/prebuilt/ prebuilt Contains a readme with location
information of different
assembly variants

<project folder>/prebuilt
/boot_images/

prebuilt Directory with prebuilt boot
images (*.bin) and configuration
files (*.bif) for zynq and
configured hardware files (*.bit
and *.mcs) for micoblaze
included in sub-folders: default
or <board_file_shortname>
/<app_name>

<project folder>/prebuilt
/hardware/

prebuilt Directory with prebuilt hardware
sources (*.bit, *xsa, *.mcs) and
reports included in subfolders:
default or
<board_file_shortname>

<project folder>/prebuilt
/software/

prebuilt (Optional) Directory with
prebuilt software sources (*.elf)
included in subfolders: default
or <board_file_shortname>
/<app_name>

<project folder>/prebuilt/os/ prebuilt (Optional) Directory with
predefined OS images included
in subfolders "<os_name>
/<board_file_shortname>" or
"<os_name>/<ddr size>"

<project folder>/scripts/ source TCL scripts to build a project

<project folder>/settings/ source (Optional) Additional design
settings: zip_ignore_list.csv,
vivado project settings, SDSOC
settings

<project folder>/software/ source (Optional) Directory with
additional software

<project folder>/os/ source (Optional) Directory with
additional os sources in in
subfolders "<os_name>"

<project folder>/sw_lib/ source (Optional) Directory with local
Vitis software IP repository and
a list of available software
(apps_list.csv)

<project folder>/v_log/ generated (Temporary) Directory with
vivado log files (used only when
Vivado is started with
predefined command files (*.
cmd) from base folder
otherwise this logs will be
written into the vivado working
directory)

<project folder>/vivado/ work, generated (Temporary) Working directory
where Vivado project is created.
Vivado project file is <project
folder>.xpr

<project folder>/vivado_lab/ work, generated (Optional/Temporary) Working
directory where Vivado
LabTools is created. LabTools
project file is <project folder>.lpr

<project folder>/workspace/hsi obsolete (Optional/Temporary) Directory
where hsi project is created

<project folder>/workspace/sdk work, generated (Optional) Directory where Vitis
project is created

<project folder>/tmp/ work, generated (Optional) Directory for some
tasks

<project folder>
/_binaries_<articlenumber>

generated export directory for binaries (run
"_create_win_setup.cmd" and
follow instructions)

<project folder>/.../SDSoC_PFM obsolete (Optional) Directory where
SDSOC project is created

<project folder>/backup/ generated (Optional) Directory for project
backups

Command Files
Command files will be generated with "_create_win_setup.cmd" on Windows and "_create_linux_setup.
sh" on Linux OS. Linux shell files are currently not available for this release.

Windows Command Files

File Name Status Description

Design + Settings

_create_win_setup.cmd available Use to create bash files. With
2018.3 and newer also "Module
Selection Guide" is included
and with 2023.2 prebuilt export
for the selected variant

_use_virtual_drive.cmd available (Option) Create virtual drive for
project execution. See Xilinx AR
#52787

design_basic_settings.cmd available Settings for the other *.cmd
files. Following Settings are
available:

General Settings:
(optional) DO_NOT_C

: Shell LOSE_SHELL
do not closed after
processing
(optional) : ZIP_PATH
Set Path to installed
Zip-Program.
Currently 7-Zip are
supported. IUsed for
predefined TCL-
function to Backup
project.
(optional) ENABLE_S

: Enable DSOC
SDSOC Setting.
Currently only for
some reference
project as beta
version!

https://www.xilinx.com/support/answers/52787.html
https://www.xilinx.com/support/answers/52787.html

Xilinx Setting:
XILDIR: Set Xilinx
installation path
(Default: c:\Xilinx).
VIVADO_VERSION:
Current Vivado
/LabTool/SDK
Version (Example:
2023.2). Don't change
Vivado Version.

Xilinx Software
will be searched
in:
VIVADO
(optional for
project creation
and
programming): %
XILDIR%
\Vivado\%
VIVADO_VERSI
ON%\
Vitis (optional for
software projects
and
programming): %
XILDIR%\Vitis\%
VIVADO_VERSI
ON%\
LabTools
(optional for
programming
only): %XILDIR%
\Vivado_Lab\%
VIVADO_VERSI
ON%\

USE_XILINX_BOARD
_STORE: use Xilinx
GIT for board files
instead of local
version

Board Setting:
PARTNUMBER: Set
Board part number of
the project which
should be created

Available
Numbers: (you
can use ID,
PRODID,
BOARDNAME or
SHORTNAME
from
TExxxx_board_fil
e.csv list)
Used for project
creation and
programming
To create empty
project without
board part, used
PARTNUMBER=-
1 (use GUI to
create your
project. No block
design tcl-file
should be in
/block_design)
Example
TE0726 Module :
USE
ID |USE
PRODID

PARTNUMBER=
1
|PARTNUMBER=
te0726-01

Programming Settings
(program*file.cmd):

SWAPP: Select
Software App, which
should be configured.

Use the folder
name of the
"<project folder>
/prebuilt
/boot_image
/<partname>/*"
subfolder. The
bin,.mcs or *.
bit from this
folder will be
used.
If you will
configure the
raw *.bit or *.mcs
*.bin from the
"<project folder>
/prebuilt
/hardware
/<partname>/"
folder, use @set
SWAPP=NA or
@set SWAPP="".
Example:
SWAPP=hello_w
orld used the
file from
"<project folder>
/prebuilt
/boot_image
/<partname>
/hello_world"
 SWAPP
=NA
used the file
from "<project
folder>/prebuilt
/boot_image
/<partname>/"

PROGRAM_ROOT_F
OLDER_FILE:
If you want to
program design file
from the rootfolder
"<project folder>", set
to 1

Attention: it
should be only
one *.bit, *.msc
or *.bin file in the
root folder.

design_clear_design_folders.
cmd

available (optional) Attention: Delete
"<project folder>/v_log/",
"<project folder>/vivado/",
"<project folder>/vivado_lab/",
"<project folder>/sdsoc/", and
"<project folder>/workspace/"
directory with related
documents! Type "Y" into the
command line input to start
deleting files

design_run_project_batchmode.
cmd

available (optional) Create Project with
setting from
"design_basic_settings.cmd"
and source folders. Build all
Vivado hardware and software
files if the sources are available.

Delete "<project folder>/vivado
/", and "<project folder>
/workspace/sdk/" directory with
related documents before
Project will created.

Hardware Design

vivado_create_project_guimode.
cmd

available Create Project with setting from
"design_basic_settings.cmd"
and source folders. Vivado GUI
will be opened during the
process.

Delete "<project folder>/vivado
/", and "<project folder>
/workspace/" directory with
related documents before
Project will created.

If old vivado project exists, type
"y" into the command line input
to start project creation again.

vivado_create_project_batchmo
de.cmd

available (optional) Create Project with
setting from
"design_basic_settings.cmd"
and source folders.

Delete "<project folder>/vivado
/", and "<project folder>
/workspace/" directory with
related documents before
Project will created.

If old vivado project exists, type
"y" into the command line input
to start project creation again.

vivado_open_existing_project_g
uimode.cmd

available Opens an existing Project
"<project folder>/vivado
/<design_name>.xpr" and
restore Script-Variables.

Software Design

sdk_create_prebuilt_project_gui
mode.cmd

available (optional) Create Vitis project
with hardware definition file
from prebuild folder. It used the
*.xsa from: "<project folder>
/prebuilt/hardware
/<board_file_shortname>/". Set
"<board_file_shortname>" and
"<app_name>" in
"design_basic_settings.cmd".

Programming

program_flash.cmd available (optional) Programming Flash
Memory via JTAG with
specified *.bin (Zynq devices) or
*.mcs (native FPGA). Used
LabTools Programmer (Vivado
or LabTools only. Default, it
used the boot.bin from:
"<project folder>/prebuilt
/boot_images
/<board_file_shortname>
/<app_name>". Settings are
done in "design_basic_settings.
cmd".

program_flash_binfile.cmd obsolete (optional) For Zynq Systems
only. Programming Flash
Memory via JTAG with
specified Boot.bin. Used SDK
Programmer (Same as SDK
"Program Flash") or LabTools
Programmer (Vivado or
LabTools only), depends on
installation settings. Default, it
used the boot.bin from:
"<project folder>/prebuilt
/boot_images
/<board_file_shortname>
/<app_name>". Settings are
done in "design_basic_settings.
cmd".

program_flash_mcsfile.cmd obsolate (optional) For Non-Zynq
Systems only. Programming
Flash Memory via JTAG with
specified "<project folder>.
mcs". Used LabTools
Programmer (Vivado or
LabTools only), depends on
installation settings. Default, it
used the <design_name>.mcs
from: "<project folder>/prebuilt
/hardware
/<board_file_shortname>".
Settings are done in
"design_basic_settings.cmd".

program_fpga_bitfile.cmd available (optional) Programming FPGA
via JTAG with specified
"<design_name>.bit". Used
LabTools Programmer (Vivado
or LabTools only), depends on
installation settings. Default, it
used the "<design_name>.bit"
from: "<project folder>/prebuilt
/hardware
/<board_file_shortname>". Setti
ngs are done in
"design_basic_settings.cmd".

labtools_open_project_guimode.
cmd

available (optional) Create or open an
existing Vivado Lab Tools
Project. (Additional TCL
functions from Programming
and Utilities Group are
usable). Settings are done in
"design_basic_settings.cmd".

Intenal Development

development_design_run_prebu
ilt_all_batchmode.cmd

internal available (only Trenz Internal) Create
files for all variants

development_utilities_backup.
cmd

internal available (only Trenz Internal) Create ZIP
file

development_xsct_console.cmd internal available (only Trenz Internal) Start
XSCT Console on Vitis
workspace

Linux Command Files

File Name Status Description

Design + Settings

_create_linux_setup.sh available Use to create bash files. With
2018.3 and newer also "Module
Selection Guide" is included
and with 2022.2 prebuilt export
for the selected variant

design_basic_settings.sh available Settings for the other *.cmd
files. Following Settings are
avaliable:

General Settings:
(optional) DO_NOT_C

: Shell LOSE_SHELL
do not closed after
processing
(optional) : ZIP_PATH
Set Path to installed
Zip-Program.
Currently 7-Zip are
supported. IUsed for
predefined TCL-
function to Backup
project.

Xilinx Setting:
XILDIR: Set Xilinx
installation path
(Default: /opt/Xilinx/).
VIVADO_VERSION:
Current Vivado
/LabTool/SDK
Version (Example:
2023.2). Don't change
Vivado Version.

Xilinx Software
will be searched
in:
VIVADO
(optional for
project creation
and
programming): %
XILDIR%/Vivado
/%
VIVADO_VERSI
ON%/ and for
SDSoC on %
XILDIR%\SDx\%
VIVADO_VERSI
ON%\Vivado\
Vitis (optional for
software projects
and
programming): %
XILDIR%/SDK\%
VIVADO_VERSI
ON%/
LabTools
(optional for
programming
only): %XILDIR%
/Vivado_Lab/%
VIVADO_VERSI
ON%/

USE_XILINX_PETALI
NUX: Betaversion,
use TE TCL
commands to built
linux from template
and export binaries to
the prebuilt folder
ALTERNATIVE_PET
ALINUX_XSETTINGS
: alternative path for
petalinux in case it's
not installed with
unified installer from
xilinx

Board Setting:
PARTNUMBER: Set
Board part number of
the project which
should be created

Available
Numbers: (you
can use ID,
PRODID,
BOARDNAME or
SHORTNAME
from
TExxxx_board_fil
e.csv list)
Used for project
creation and
programming
To create empty
project without
board part, used
PARTNUMBER=-
1 (use GUI to
create your
project. No block
design tcl-file
should be in
/block_design)
Example
TE0726 Module :
USE
ID |USE
PRODID
PARTNUMBER=
1
|PARTNUMBER=
te0726-01

USE_XILINX_BOARD
_STORE: use Xilinx
GIT for board files
instead of local
version

Programming Settings
(program*file.cmd):

SWAPP: Select
Software App, which
should be configured.

Use the folder
name of the
"<project folder>
/prebuilt
/boot_image
/<partname>/*"
subfolder. The
bin,.mcs or *.
bit from this
folder will be
used.
If you will
configure the
raw *.bit or *.mcs
*.bin from the
"<project folder>
/prebuilt
/hardware
/<partname>/"
folder, use @set
SWAPP=NA or
@set SWAPP="".
Example:
SWAPP=hello_w
orld used the
file from prebuilt
/boot_image
/<partname>
/hello_world
 SWAPP
=NA
used the file
from <project
folder>/prebuilt
/boot_image
/<partname>/

PROGRAM_ROOT_F
OLDER_FILE:
If you want to
program design file
from the rootfolder
"<project folder>", set
to 1

Attention: it
should be only
one *.bit, *.msc
or *.bin file in the
root folder.

design_clear_design_folders.sh not available (optional) Attention: Delete
"<project folder>/v_log/",
"<project folder>/vivado/",
"<project folder>/vivado_lab/",
"<project folder>/sdsoc/", and
"<project folder>/workspace/"
directory with related
documents! Type "Y" into the
command line input to start
deleting files

design_run_project_bashmode.
sh

available (optional) Create Project with
setting from
"design_basic_settings.cmd"
and source folders. Build all
Vivado hardware and software
files if the sources are available.

Delete "<project folder>/vivado
/", and "<project folder>
/workspace/sdk/" directory with
related documents before
Project will created.

Hardware Design

vivado_create_project_guimode.
sh

available Create Project with setting from
"design_basic_settings.cmd"
and source folders. Vivado GUI
will be opened during the
process.

Delete "<project folder>/vivado
/", and "<project folder>
/workspace/" directory with
related documents before
Project will created.

If old vivado project exists, type
"y" into the command line input
to start project creation again.

vivado_create_project_bashmo
de.sh

not available (optional) Create Project with
setting from
"design_basic_settings.cmd"
and source folders.

Delete "<project folder>/vivado
/", and "<project folder>
/workspace/" directory with
related documents before
Project will created.

If old vivado project exists, type
"y" into the command line input
to start project creation again.

vivado_open_existing_project_g
uimode.sh

available Opens an existing Project
"<project folder>/vivado
/<design_name>.xpr" and
restore Script-Variables.

Software Design

sdk_create_prebuilt_project_gui
mode.sh

not available (optional) Create SDK project
with hardware definition file
from prebuild folder. It used the
*.hdfxsa from: "<project folder>
/prebuilt/hardware
/<board_file_shortname>/". Set
"<board_file_shortname>" and
"<app_name>" in
"design_basic_settings.cmd".

Programming

program_flash.sh not available (optional) Programming Flash
Memory via JTAG with
specified *.bin (Zynq devices) or
*.mcs (native FPGA). Used
LabTools Programmer (Vivado
or LabTools only. Default, it
used the boot.bin from:
"<project folder>/prebuilt
/boot_images
/<board_file_shortname>
/<app_name>". Settings are
done in "design_basic_settings.
sh".

labtools_open_project_guimode.
sh

not available (optional) Create or open an
existing Vivado Lab Tools
Project. (Additional TCL
functions from Programming
and Utilities Group are
usable). Settings are done in
"design_basic_settings.cmd".

Intenal Development

development_design_run_prebu
ilt_all_batchmode.sh

internal available (only Trenz Internal) Create
files for all variants

development_utilities_backup.sh internal available (only Trenz Internal) Create ZIP
file

TE-TCL-Extentions

Name Options Description (Default
Configuration)

TE::help Display currently available
functions. Important: Use only
displayed functions and no
functions from sub-namespaces

Hardware Design

TE::hw_blockdesign_create_bd [-bd_name] [-msys_local_mem]
[-msys_ecc] [-msys_cache] [-
msys_debug_module] [-
msys_axi_periph] [-
msys_axi_intc] [-msys_clk] [-
help]

Create new Block-Design with
initial Setting for PS, for
predefined bd_names:
fsysFabric Only,
msysMicroblaze, zsys7Series
Zynq, zusysUltraScale+ Zynq

Type TE::
hw_blockdesign_create_bd -
help for more information

TE::hw_blockdesign_export_tcl [-no_mig_contents] [-
no_validate] [-mod_tcl] [-svntxt
<arg>] [-board_part_only] [-
help]

Export Block Design to project
folder "<project folder>
/block_design/" . Old *bd.tcl will
be overwritten!

TE::hw_build_design \[-disable_synth\] \[-
disable_bitgen\] \[-disable_hdf\] \
[-disable_mcsgen\] \[-
disable_reports\] \[-
export_prebuilt\] \[-
export_prebuilt_only\] \[-help\]

Run synthesis, Implement, and
generate Bit-file, optional MCS-
file and some report files

Software Design

TE::sw_run_hsi [-run_only] [-prebuilt_hdf <arg>]
[-no_hsi] [-no_bif] [-no_bin] [-
no_bitmcs] [-clear] [-help]

obsolete

Copies current Hardware files
and reports from the vivado
project to the prebuilt folder, if -
prebuild_hdf <arg> isn't set.
Copy the Hardware Definition
file to the working directory:
"<project folder>/workspace/hsi"
Run HSI in "<project folder>
/workspace/hsi" for all
Programs listed in
"<project_folder>/sw_lib
/apps_list.csv"
If HSI is finished, BIF-GEN and
BIN-Gen are running for these
Apps in the prebuilt folders
"<project folder>/prebuilt/..."
You can deactivate different
steps with following args :

-no_hsi : *.elf files
generation is disabled
-no_bif : *.bif files
generation is disabled
-no_bin : *.bin files
generation is disabled
-no_bitmcs: *.bit and *.mcs
file (with software design)
is disabled

TE::sw_run_sdk [-open_only] [-update_hdf_only]
[-prebuilt_hdf <arg>] [-clear] [-
help]

obsolete

Copies current Hardware files
and reports from the vivado
project to the prebuilt folder, if -
prebuild_hdf <arg> isn't set.
Copy the Hardware Definition
file to the working directory:
"<project folder>/workspace
/sdk"
Start SDK GUI in this workspace

TE::sw_run_vitis [-all] [-gui_only] [-no_gui] [-
workspace_only] [-
prebuilt_xsa_only] [-
prebuilt_xsa <arg>] [-clear] [-
help]

Copies current Hardware files
and reports from the vivado
project to the prebuilt folder, if -
prebuild_xsa <arg> or -
prebuilt_xsa_only isn't selected.

Copy the XSA File to the
working directory: "<project
folder>/workspace/sdk"

Generates Vitis workspace with
platform project and start Vitis.
Optional parameter

-all : generate
all apps defined in
apps_list.csv and export
results
 into the
prebuild folder
-gui_only : open
only Vitis on the default
workspace
-no_gui : Vitis will
not opened after project
generation
-workspace_only : copy
XSA file only into the
workspace
-prebuilt_xsa* : use
prebuilt XSA

TE::sw_run_plx [-run] [-config] [-u-boot] [-kernel]
[-rootfs] [-bootscr_opt <arg1>
<arg2> <arg3> <arg4>] [-
devicetree <arg>] [-app <arg>]
[-disable_clear] [-clear] [-help]

Attention: Beta usage only
for Linux OS

-run: generated whole
project from OS folder and
export linux binaries to
prebuilt
-config: run petalinux-config
-u-boot: run petalinux-
config -c u-boot
-kernel: run petalinux-
config -c kernel
-rootfs: run petalinux-
config -c rootfs
-bootscr_opt: change
bootscr option(default will
be run if not defined).
arg1=def,ign,mod, if
arg1=mod add also
arg2=imageub_addr
arg3=imageub_flash_addr
arg4=imageub_flash_size
-devicetree <arg>: open
device tree with
gvim unse <arg>=system
for linux and <arg>=u-boot
for u-boot device tree
-app <arg>: run petalinux-
create -t apps -n <arg> --
enable Note this generates
only simple hello world
project which must be
modified manually
-disable_clear: disable
automatically project
clearing after run
-clear: run project clearing

Programming

TE::pr_init_hardware_manager [-help] Open Hardware manager,
autoconnect target device and
initialise flash memory with
configuration from *_board_files.
csv.

TE::pr_program_jtag_bitfile [-used_board <arg>] [-swapp
<arg>] [-available_apps] [-
used_basefolder_bitfile] [-help]

If "-used_basefolder_bitfile" is
set, the Bitfile (*.bit) from the
base folder ("<project folder>")
is used instead of the prebuilds.
Attention: Take only one Bitfile
in the basefolder!

(MicroBlaze only) If "-swapp" is
set, the Bitfile with *.elf
configuration is used from
"<project_folder>/prebuilt
/boot_images
/<board_file_shortname>
/<app_name>"

TE::pr_program_flash [-swapp <arg>] [-swapp_av] [-
reboot] [-erase] [-setup] [-
used_board] [-basefolder] [-
def_fsbl] [-help]

Program flash with the given
swapp from the prebuilt folder
("<project folder>/prebuilt
/boot_images
/<board_file_shortname>
/<app_name>").
Available app can be checked
with -swapp_av, specify app
with -swapp <app_name>
Erase flash only with -erase

TE::pr_putty [-available_com] [-com] [-
speed] [-help]

Show available COM ports and
open automatically the UART
COM port, in case only one is
selectable

Important:

Need putty installed in
global path enviroments
Linux currently not
supported

TE::pr_program_flash_binfile [-no_reboot] [-used_board
<arg>] [-swapp <arg>] [-
available_apps] [-
force_hw_manager] [-
used_basefolder_binfile] [-help]

Attention: For Zynq Systems
only!
Program the Bootbin from
"<project folder>/prebuilt
/boot_images
/<board_file_shortname>
/<app_name>" to the fpga
device.
Appname is selected with: -
swapp <app_name>
After programming device
reboot from memory will be
done.
Default SDK Programmer is
used, if not available LabTools
Programmer is used.
If "-used_basefolder_binfile" is
set, the Binfile (*.bin) rom the
base folder (<project folder>) is
used instead of the prebuilts.
Attention: Take only one Binfile
in the basefolder!

TE::pr_program_flash_mcsfile [-no_reboot] [-used_board
<arg>] [-swapp <arg>] [-
available_apps] [-
used_basefolder_mcsfile] [-help]

Copies current Hardware files
and reports from the vivado
project to the prebuilt folder, if -
used_board <arg> isn't set
(Vivado only).
Initialise flash memory with
configuration from *_board_files.
csv
Programming MCSfile from
"<project folder>/prebuilt
/hardware
/<board_file_shortname>" to
the Flash Device.
After programming device
reboot from memory will be
done.
If "-used_basefolder_binfile" is
set, the MCSfile (*.mcs) from
the base folder (<project
folder>) is used instead of the
prebuilds. Attention: Take only
one MCSfile in the basefolder!

(MicroBlaze only) If "-swapp" is
set, the MCSfile with *.elf
configuration is used from
"<project folder>/prebuilt
/boot_images
/<board_file_shortname>
/<app_name>"

Utilities

TE::util_zip_project [-save_all] [-remove_prebuilt] [-
manual_filename <arg>] [-help]

Make a Backup from your
Project in "<project folder>
/backup/"

Zip-Program Variable must be
set in start_settings.cmd.
Currently only 7-Zip is
supported.

TE::util_editor [-file <arg>] [-help] open file with editor which is set
on "TE_EDITOR" Enviroment
variable

TE::util_terminal [-help] linux only. open new terminal

TE::util_package_length [-help] Export Package IO length
information to *.csv on the doc
folder

TE::util_svn [-status] [-update] [-add <arg>]
[-remove <arg>] [-commit
<arg>] [-commit\] [-help]

start svn commands on the
current project(project must be
under SVN Version)

On Win OS: Need Tortouise
SVN with command line tools
installation

On Linux: Need subversion
installed, for example sudo apt-
get install subversion -y

Beta Test (Advanced usage only!)

TE::ADV::
beta_util_sdsoc_project

[-check_only] [-help] Create SDSOC-Workspace.
Currently only on some
Reference-Designs available.
Run [-check_only] option to
check SDSOC ready state.

TE::ADV::
beta_hw_remove_board_part

[-permanent] [-help] Reconfigure Vivado project as
project without board part.
Generate XDC-File from board
part IO definitions and change
ip board part properties. No all
IPs are supported.

TE::ADV::beta_hw_export_rtl_ip \[-help\] Save IPs used on rtl designs as
*.xci in "<project folder>hdl/xci".
If sub folder
"<board_file_shortname>" is
defined this will be saved there.

TE::ADV::
beta_hw_create_board_part

\[-series <arg>\] \[-all\] \[-
preset\] \[-existing_ps\] \[-help\]

create PS or preset.xml PS
settings from external tcl scripts

TE::ADV::
beta_hw_export_binary

\[-mode <arg>\] \[-app <arg>\] \[-
folder <arg>\] \[-all\] \[-help\]

export prebuilt files to an given
folder (based from project
folder). Special folder is used, if
empty

Design Environment: Usage

Reference-Design: Getting Started
Install or (free license for some FPGA Xilinx Vivado Design Suite Xilinx Vivado Webpack
only: see)http://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html
(optional) Install (Lab Edition)Xilinx Vivado LabTools
Automatically configuration of the reference-designs (only with 2018.3 scripts and newer):

Run "_create_win_setup.cmd" or "_create_linux_setup.sh"
select "module selection guide" and follow instructions.

" " will be configured over this menudesign_basic_settings.cmd
(optional for 18.3 or newer) Manual Configure the reference-design (Note: batch/bash files
works only in the basefolder of the project, use _create_*_setup.cmd/sh or copy manually):
1. Open “ ” with a text-editor:design_basic_settings.cmd
 a. Set correct Xilinx Environment:
 @set XILDIR=C:/Xilinx
 @set VIVADO_VERSION=2023.2
 Program settings will be search in :
 %XILDIR%/VIVADO/%VIVADO_VERSION%/
 %XILDIR%/Vivado_Lab/%VIVADO_VERSION%/
 %XILDIR%/Vitis/%VIVADO_VERSION%/
 Example directory: c:/Xilinx/Vivado/2023.2/
 Scripts are supported only with predefined Vivado Version!Attention:
 b. Set the correct module part-number:
 @set PARTNUMBER=x
 You found the available Module Numbers in "<project folder>/board_files

 /<board_series>_board_files.csv"
 c. Set Application name (for programming with batch-files only):
 @set SWAPP=NA
 NA (No Software Project) used *.bit or *.mcs from "<project folder>/prebuilt/hardware
/<board_file_shortname>"
 <app_name> (Software Project) used *.bit or *.mcs or *.bin from "<project folder>/prebuilt
/boot_images/<board_file_shortname>/<app_name>"

http://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html

Create all prebuilt files in one step:
2. Run “ ”design_run_project_batchmode.cmd
(optional to Step 2) Create all prebuilt files in single steps:
3. Run “ ”:vivado_create_project_guimode.cmd
 A Vivado Project will be create and open in ./vivado
4. Type “ ” on Vivado TCL-Console:TE::hw_build_design
 Run synthesis, Implement and create Bitfile and optional MCSfile
5. Type “ ” on Vivado TCL-Console:TE::sw_run_vitis -all -no_gui
 Create all Software Applications from "<project folder>/sw_lib/apps_list.csv"
6. (optional to Step 5) Type “ ” on Vivado TCL-Console:TE::sw_run_vitis
 Create a SDK Project in "<project folder>/workspace/sdk"
 Include Hardware-Definition-File, Bit-file and local Software-libraries from "<project folder>
/sw_lib/sw_apps"
Programming FPGA or Flash Memory with prebuilt Files:
7. Connect your Hardware-Modul with PC via JTAG.
With Batch-file:
8. (optional) Zynq-Devices Flash Programming (*.bin) or FPGA-Device Flash Programming (*.
mcs):
 Run “ ”program_flash.cmd
10. (optional) FPGA-Device Programming (*.bit):
 Run “ ”program_fpga_bitfile.cmd
With Vivado/Labtools TCL-Console:
11. Run “ ” or “vivado_open_existing_project_guimode.cmd labtools_open_project_guimod

” to open Vivado or LabToolse.cmd
12. (optional) Zynq-Devices Flash Programming (*.bin):
 Type “ ” on Vivado TCL-ConsoleTE::pr_program_flash -swap <app_name>
 Used ".bin(Zynq)/.mcs(native FPGA) <project folder>/prebuilt/boot_images
/<board_file_shortname>/<app_name>"
13. (optional) FPGA-Device Programming (*.bit):
 Type “ ” on Vivado TCL-ConsoleTE:: pr_program_jtag_bitfile -swap <app_name>
 Used *.bit from "<project folder>/prebuilt/boot_images/<board_file_shortname>
/<app_name>"

Basic Design Settings

Initialise TE-scripts on Vivado/LabTools

Variant 1 (recommended):
Start the project with the predefined command file (vivado_open_existing_project_gu

respectively LabTools with) imode.cmd ()labtools_open_project_guimode.cmd
Variant 2:

Create your own Initialisation Button on the Vivado GUI:
Tools Customize Commands Customize Commands...
Push
Type Name ex.: Init Scripts
Press Enter

:Select Run command and insert
for Vivado: cd [get_property DIRECTORY [current_project]]; source -
notrace "../scripts/reinitialise_all.tcl"
for LabTool: cd [pwd]; source -notrace "../scripts/reinitialise_all.tcl"

EnterPress
A new Button is shown on the Vivado GUI: All Scripts are reinitialised, if you
press this Button.

Variant 3:
Reinitialise Script on Vivado TCL-Console:

Type: source ../scripts/reinitialise_all.tcl

Use predefined TE-Script functions

Variant 1 (recommended):
Type function on Vivado TCL Console, ex.: TE::help
TE::help

Show all predefined TE-Script functions.
TE:<function_name> -help

Show short description of this function.
Attention: If -help argument is set, all other args will be ignored.

Variant 2:
Create your own function Button on the Vivado GUI:

Tools Customize Commands Customize Commands...
Push +
Type Name ex.: Run SDK
Press Enter
Select Run command and insert function:

Variante 1 (no Vivado request window for args):
insert function and used args, ex.: TE::sw_program_zynq -
swapp hello_world

Variant 2 ():Vivado request window for args
insert function, ex.:TE::sw_program_zynq
Press Define Args...
For every arg:

Push
Type Name, Comment, Default Value and set
optional
Press Enter
Example for args:

Push
Index, Key Name, -swapp,
Push
Appname, Arg, hello_world,

EnterPress

A new Button is shown on the Vivado GUI.

Environment Variables

Local

Files Note

<project folder>/design_basic_settings.cmd/sh General local variables for project generation

<project folder>/settings/design_settings.tcl Design setting like Device Filter, UART Speed
and Port

<project folder>/settings/development_setting.
tcl

Development settings which can manipulate
execution steps

Global

Name Value Note

TE_SERIAL_PS <path> Internal usage only

TE_COM <path> path to putty, in case it's not
installed global

TE_TIMEOUT <time> timeout for jobs, unit in minutes,
def 120

TE_RUNNING_JOBS <count> max jobs (depends on available
CPUs) which can be started by
Vivado, default 4

TE_WSL_USAGE 1/0 1 use Windows programs for
some external processes

TE_GUI_DISABLED 1/0
default 0 GUI mode
always enabled.
Set environment in case
external scripts run
processes
has effects on shell prints
and other processes
Currently betaversion!

TE_EDITOR <name> Text Editor which should be
started for some TE functions

TE_PLX_SSTATE_CACHE_DO
WNLOAD

<path> Local version of SSTATE, file
avialable on the download area
from Xilinx petalinux, example:

TE_PLX_SSTATE_CACHE_DO
WNLOAD="~/design/sstate-
cache/downloads_2023.2
/downloads"

PLX_SSTATE_CACHE_AARC
H64

<path> Local version of SSTATE for U+
Zynq and Versal, file avialable
on the download area from
Xilinx petalinux, example:

TE_PLX_SSTATE_CACHE_DO
WNLOAD="~/design/sstate-
cache/downloads_2023.2
/downloads"

PLX_SSTATE_CACHE_ARM <path> Local version of SSTATE for
Zynq 7000, file avialable on the
download area from Xilinx
petalinux, example:

PLX_SSTATE_CACHE_ARM="
~/design/sstate-cache
/sstate_arm_2023.2/arm"

PLX_SSTATE_CACHE_MB_FU
LL

<path> Local version of SSTATE for
Microblaze, file avialable on the
download area from Xilinx
petalinux, example:

PLX_SSTATE_CACHE_ARM="
~/design/sstate-cache
/sstate_mb_full_2023.2/mb_full"

PLX_SSTATE_CACHE_MB_LI
TE

<path> currently not supported

Hardware Design

Board Part Files

More details see TE Board Part Files

Structure Board Parts

Board Parts are located on subfolder "board_files", with the name of the special board. Revisions are
split in the subfolder of the board part <boardpart_name><version>

Every Version of a Board Parts consists of four files:

board.xml
part0_pins.xml
preset.xml
picture.jpg or .pngpicture

Board Part or Design Extension

Board Part Extensions are TCL-Scripts, which can be sourced in Vivado Block Design. Thy are usable
with TE-Scripts only. It contains additional settings of PS-settings or special carrier-board design
changes.

Use Reference Designs or Vivado TCL-Console (TE-Script extensions, see Initialise TE-scripts on Vivado
):/LabTools TE::hw_blockdesign_create_bd -help to create PS with full settings. Or source the TCL file

manually direct after "Run Block Automation"

:Possible

Board Part are located on subfolder "board_files/preset_extension/" with file name PS settings
*_preset.tcl.
Design modifications are located on subfolder "board_files/bd_mod/" with file name *_bd.tcl.

Board Part CSV Description

Board Part csv file is used for TE-Scripts only.

Name Description Value

ID ID to identify the board variant
of the module series, used in
TE-Scripts

Number, should be unique in
csv list

PRODID Product ID Product Name

PARTNAME FPGA Part Name, used in
Vivado and TE-Scripts

Part Name, which is available in
Vivado, ex. xc7z045ffg900-2

BOARDNAME Board Part Name, used in
Vivado and TE-Scripts

set Board Part Name or "NA",
which is available in Vivado, NA
is not defined to run without
board part and board part ex. tre

:te0782-02-45:part0:1.0nz.biz

SHORTNAME Subdirectory name, used for
multi board projects to get
correct sources and save
prebuilt data

name to save prebuilt files or
search for sources

ZYNQFLASHTYP Flash type used for
programming Zynq-Devices via
SDK-Programming Tools
(program_flash)

"qspi_single" or "NA", NA is not
defined

FPGAFLASHTYP Flash type used for
programming Devices via
Vivado/LabTools

"<Flash Name from
Vivado>|<SPI Interface>|<Flash
Size in MB>" or "NA" , NA is not
defined, ex. s25fl256s-3.3v-qspi-
x4-single|SPIx4|32

https://wiki.trenz-electronic.de/display/PD/TE+Board+Part+Files
http://trenz.biz
http://trenz.biz

Flash Name is used for
programming, SPI Interface and
Size in MB is used for *.mcs
build.

For Zynq and ZynqMO only
Flash name is necessary

PCB_REV Supported PCB Revision "<supported PCB
Revision>|<supported PCB
Revision>", for ex. "REV02" or
"REV03|REV02"

DDR_SIZE Size of Module DDR use GB or MB, for ex. "2GB" or
"512MB" or "NA" if not available

FLASH_SIZE Size of Module Flash use MB, for ex. "64MB" or "NA"
if not available

EMMC_SIZE Size of Module EMMC use GB or MB, for ex. "4GB" or
"NA" if not available

OTHERS Other module relevant changes
to distinguish assembly variants

NOTES Additional Notes

DESIGN Specify the allowed variants for
different designs.

see also <design
folder>\settings\design_settings.
tcl

CONFIG_SW_EXTPLL Optional parameter to support
different PLL Versions which
can be programmed

Replace all files with the same
file name on sw_lib folder with
the specified one
Will be copied once on project
generation with
"_create_*_setup.*" from misc
folder to fsbl source code

relativ path to the source file, for
example "./misc/PLL/SI5345_D
/te_Si5345-Registers.h"

Block Design Conventions

Only one Block-Design per project is supported
Recommended BD-Names (currently importend for some TE-Scripts):

Name Description

zsys Identify project as Zynq Project with
processor (longer name with *zsys* system
are supported too)

zusys Identify project as UltraScaleZynq Project
with processor (longer name with system
zusys are supported too)

msys Identify project as Microblaze Project with
processor (longer name with *msys* system
are supported too)

fsys Identify project as FPGA-fabric Project
without processor system (longer name with
fsys are supported too)

Create Basic Block Design with PS Board-Part Preset and Carrier-Board extended (onlysettings
if subfolder carrier_extension with tcl files is available), use TE::hw_blockdesign_create_bd -help

XDC Conventions

All *.xdc from are load into the vivado project on project creation.<project folder>/constrains/
Attention: If subfolder <project folder>/constrains/ is defined, it will be <board_file_shortname>
used the subfolder constrains only for this module!
Recommended XDC-Names (used for Vivado XDC-options):

Property Name part Description

Set Processing Order *_e_* earlyset to

l set to late

set to normal

Set Used In *_s_* used in synthesis only

i used in implement only

used in both, synthesis and
implement

Backup Block Design as TCL-File

Backup your Block-Design with TCL-Command " " in <project TE::hw_blockdesign_export_tcl
folder>/block_design/
It will be saved as *_bd.tcl

: If subfolder or Attention <project folder>/block_design/<board_file_shortname> <project folder>
 is defined, it will be saved there!/block_design/PCB Revision>

 Only one *.tcl file should be in the backup folder respectively the subfolder <board_file_
shortname>

Microblaze Firmware

Microblaze Firmware (*.elf) can be add to the source folder <project folder>/firmware
./<Microblaze IP Instance>

For MCS-Core use MCS IP Instance Name. This name must use *mcs* or *syscontrol* in the
name.

Software Design

Vitis: Generate predefined software from libraries

To generate predefined software from libraries, run " " on Vivado TE::sw_run_vitis -all -no_gui
TCL-Console
All programs in in are generated automaticity<project folder>/sw_lib/apps_list.csv
Supported are local application libraries from or the most Xilinx <project folder>/sw_lib/sw_apps
SDK Applications found in %XILDIR%/SDK/%VIVADO_VERSION%/data/embeddedsw/lib
/sw_app

VITIS: Create user software project

To start SDK project, run " " on Vivado TCL-Console or run "TE::sw_run_vitis TE::sw_run_vitis -
" on Vivado TCL-Consoleworkspace_only

Include Hardware-Definition-File (XSA), Bit-file and local Software-libraries from "<project folder>
/sw_lib/sw_apps"

 To use Hardware-Definition-File, Bit-file from prebuilt folder without building the vivado hardware
project, run " " or type sdk_create_prebuilt_project_guimode.cmd "TE::sw_run_vitis -

" on Vivado-TCL-Consoleprebuilt_xsa <board_number>
To open an existing SDK-project without update HDF-Data, type " " on TE::sw_run_vitis -gui_only
Vivado-TCL-Console

Advanced Usage
Attention not all features of the TE-Scripts are supported in the advanced usage!

User defined board part csv file

To modify current board part csv list, make a copy of the original csv and rename with suffix "_mod.csv",
ex.TE0782_board_files.csv as TE0782_board_files_mod.csv. Scripts used modified csv instead of the
original file.

See for more information.Chapter Board Part Files

User defined Settings

Vivado settings:
Vivado Project settings (corresponding TCL-Commands) can be saved as a user
defined file "<project folder>/settings/project_settings.tcl". This file will be loaded autom

 on project creation.atically
Script settings:

Additional script settings (only some predefined variables) can be saved as a user
 "<project folder>/settings/development_settings.tcl". This file will be loaded defined file

 on script initialisation.automatically
Design settings:

Additional script settings (only some predefined variables) can be saved as a user
 "<project folder>/settings/design_settings.tcl". This file will be loaded defined file autom

 on script initialisation.atically
ZIP ignore list:

Files which should not be added in the backup file can be can be defined in this file:
"<project folder>/settings/zip_ignore_list.tcl". This file will be loaded automatically on
script initialisation.

SDSOC settings:
SDSOC settings will are deposited on the following folder: "<project folder>/settings/sds

"oc

User defined TCL Script

TCL Files from will be load automatically on script initialisation."<project folder>/settings/usr"

SDSOC-Template

SDSOC description and files to generate SDSoC project are on the following folder: deposited "<project
folder>/settings/ "sdsoc

1.

2.

3.

4.
5.

6.

7.

8.

9.

10.

1.
2.
3.
4.
5.
6.
7.
8.

HDL-Design

HDL files can be saved in the subfolder " " as single files or folder/ <project folder>/hdl/ <project folder>/hdl/
and all subfolders or and all subfolders of " <shortname>"<project folder>/hdl/ " <shortn<project folder>/hdl/

. They will be loaded automatically on project creation. Available formats are *.vhd, *.v and *.sv. A ame>"
own top-file must be specified with the name " _top.v" or <project folder> " _top.vhd".<project folder>

To set file attributes, the file name must include "_simonly_" for simulation only and for "_synonly_"
synthesis only.

IP-cores (*.xci). can be saved in the subfolder or " xci"<project folder>/hdl/ " xci/<project folder>/hdl/ <shortn
. "ame> They will be loaded automatically on project creation.

IP -TCL description (*_preset.tcl). can be saved in the subfolder "<project folder>/hdl/tcl" or "<project
folder>/hdl/tcl/<shortname>". They will be loaded automatically on project creation.

*_preset.tcl must include
TCL part for IP creation: create_ip -name ...
TCL part for IP configuration: set_property -dict...
TCL part for IP target generation: generate_target {instantiation_template}

Checklist / Troubleshoot

Are you using exactly the same Vivado version? If not then the scripts will not work, no need to
try.
Are you using Vivado in Windows PC? Vivado works in Linux also, but the scripts are tested on
Windows only.
Is you PC OS Installation English? Vivado may work on national versions also, but there have
been known problems.
Win OS only: Use short path name, OS allows only 256 characters in normal path.
Linux OS only: Use bash as shell and add access rights to bash files. Check with "ls ls /bin/sh".
It should be display: /bin/sh -> bash. Access rights can be changed with "chmod"
Are space character on the project path? Sometimes TCL-Scripts can't handle this correctly.
Remove spaces from project path.
Did you have the newest reference design build version? Maybe it's only a bug from a older
version.
Check <project folder>/v_log/vivado.log? If no logfile exist, wrong xilinx paths are set in design_b
asic_settings.cmd
On project creation process old files will be deleted. Sometimes the access will be denied by os

 (synchronisation problem) and the scripts cancelled. Please try again.
If nothing helps, send a mail to Trenz Electronic Support () support[at]trenz-electronic.de
with subject line "[TE-Reference Designs] ", the complete zip-name from your reference design
and the last log file (<project folder>/v_log/vivado.log)

References

Vivado Design Suite User Guide - Getting Started (UG910)
Vivado Design Suite User Guide - Using the Vivado IDE (UG893)
Vivado Design Suite User Guide - I/O and Clock Planning (UG899)
Vivado Design Suite User Guide - Programming and Debugging (UG908)
Zynq-7000 All Programmable SoC Software Developers Guide (UG821)
SDSoC Environment User Guide - Getting Started (UG1028)
SDSoC Environment - User Guide (UG1027)
SDSoC Environment User Guide - Platforms and Libraries (UG1146)

Document Change History

mailto:support@trenz-electronic.de

To get content of older revision got to "Change History" of this page and select older revision number.

Date Revision Vivado Version Authors Description

2022.2 working in process

Err

or

ren

der

ing

ma

cro

'pa

ge-

inf

o'

Am

big

uou

s

met

hod

ove

rloa

din

g

for

met

hod

jdk.

pro

xy2

79.

$Pr

oxy

402

2#h

asC

ont

Err

or

ren

der

ing

ma

cro

'pa

ge-

inf

o'

Am

big

uou

s

met

hod

ove

rloa

din

g

for

met

hod

jdk.

pro

xy2

79.

$Pr

oxy

402

2#h

asC

ont

Err

or

ren

der

ing

ma

cro

'pa

ge-

inf

o'

Am

big

uou

s

met

hod

ove

rloa

din

g

for

met

hod

jdk.

pro

xy2

79.

$Pr

oxy

402

2#h

asC

ont

ent

Lev

elP

erm

issi

on.

Ca

nno

t

res

olv

e

whi

ch

met

hod

to

inv

oke

for

[nul

l,

clas

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

ent

Lev

elP

erm

issi

on.

Ca

nno

t

res

olv

e

whi

ch

met

hod

to

inv

oke

for

[nul

l,

clas

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

ent

Lev

elP

erm

issi

on.

Ca

nno

t

res

olv

e

whi

ch

met

hod

to

inv

oke

for

[nul

l,

clas

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

pag

es.

Pag

e]

due

to

ove

rlap

pin

g

prot

oty

pes

bet

we

en:

[int

erfa

ce

co

m.

atla

ssia

n.

con

flue

nce

.

use

r.

Co

nflu

enc

eUs

er,

clas

s

nce

.

pag

es.

Pag

e]

due

to

ove

rlap

pin

g

prot

oty

pes

bet

we

en:

[int

erfa

ce

co

m.

atla

ssia

n.

con

flue

nce

.

use

r.

Co

nflu

enc

eUs

er,

clas

s

nce

.

pag

es.

Pag

e]

due

to

ove

rlap

pin

g

prot

oty

pes

bet

we

en:

[int

erfa

ce

co

m.

atla

ssia

n.

con

flue

nce

.

use

r.

Co

nflu

enc

eUs

er,

clas

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

cor

e.

Co

nte

ntE

ntit

yO

bje

ct]

[int

erfa

ce

co

m.

atla

ssia

n.

use

r.

Use

r,

clas

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

cor

e.

Co

nte

ntE

ntit

yO

bje

ct]

[int

erfa

ce

co

m.

atla

ssia

n.

use

r.

Use

r,

clas

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

cor

e.

Co

nte

ntE

ntit

yO

bje

ct]

[int

erfa

ce

co

m.

atla

ssia

n.

use

r.

Use

r,

clas

2023-08-15 v.176 2022.2 John Hartfiel Last Vivado 2022.2
supported project
delivery version

2023-02-06 v.171 2021.2 John Hartfiel Last Vivado 2021.2
supported project
delivery version

2021-05-06 v.162 2020.2 Manuela Strücker Last Vivado 2020.2
supported project
delivery version

2020-11-26 v.157 2019.2 John Hartfiel Last Vivado 2019.2
supported project
delivery version

2019-12-18 v.148 2018.2 John Hartfiel Last Vivado 2018.3
supported project
delivery version

--- --- 2018.2 John Hartfiel Last Vivado 2018.2
supported project
delivery version

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

cor

e.

Co

nte

ntE

ntit

yO

bje

ct]

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

cor

e.

Co

nte

ntE

ntit

yO

bje

ct]

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

cor

e.

Co

nte

ntE

ntit

yO

bje

ct]

no document
update was done

2019-07-10 v.142 2017.4 John Hartfiel Last Vivado 2017.4
supported project
delivery version

2017-11-03 v.134 2017.2 John Hartfiel Last Vivado 2017.2
supported project
delivery version

2017-09-12 v.131 2017.1 John Hartfiel Last Vivado 2017.1
supported project
delivery version

2017-04-12 v.126 2016.4 John Hartfiel Last Vivado 2016.4
supported project
delivery version

2017-01-16 v.114 2016.2 John Hartfiel Last Vivado 2016.2
supported project
delivery version

2016-06-21 v.83 2015.4 John Hartfiel Last Vivado 2015.4
supported project
delivery version

2013-03-11 v.1 --- Antti Lukats Initial release

All

Err

or

ren

der

ing

ma

cro

'pa

ge-

inf

o'

Am

big

uou

s

met

hod

ove

rloa

din

g

for

met

hod

jdk.

pro

xy2

79.

$Pr

oxy

402

2#h

asC

ont

ent

Lev

elP

erm

issi

on.

Ca

nno

t

res

olv

e

whi

ch

met

hod

to

inv

oke

for

[nul

l,

clas

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

pag

es.

Pag

e]

due

to

ove

rlap

pin

g

prot

oty

pes

bet

we

en:

[int

erfa

ce

co

m.

atla

ssia

n.

con

flue

nce

.

use

r.

Co

nflu

enc

eUs

er,

clas

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

cor

e.

Co

nte

ntE

ntit

yO

bje

ct]

[int

erfa

ce

co

m.

atla

ssia

n.

use

r.

Use

r,

clas

s

jav

a.

lan

g.

Stri

ng,

clas

s

co

m.

atla

ssia

n.

con

flue

nce

.

cor

e.

Co

nte

ntE

ntit

yO

bje

ct]

	Project Delivery - AMD devices

