
TO DELETE XPS_NPI_DMA custom IP core block

Description
XPS_NPI_DMA is high performance direct memory access (DMA) engine which seamlessly integrates into Xilinx EDK environment (figure below). It is
highly flexible due to full access of the softcore MicroBlaze to the XPS_NPI_DMA core functionality through 9 32-bit registers attached to PLBv4.6 bus.

It enables high speed data streaming to (input port) and from (output port) an external memory attached to a Xilinx Multiport Memory Controller (MPMC).

Features

The input and output port can run simultaneously.
The transfer on each port can have its own allocated memory space and can be looped. Loop means that when the transfer will run indefinitely on
allocated memory space (like a frame buffer) until stopped.
The data written to the input port can be stored in a memory linearly.
The data coming out from the output port can be read in X-Y pattern. That means it can read data linearly or canjump in memory locations to
transpose input data – used for rotating image for 90 degrees. That is possible when using single beat transactions (word or double-word) for
reading.

System integration block scheme

The XPS_NPI_DMA has 4 interfaces:

Xilinx PLBv4.6 created with IPIF wizard for access to 9 x 32-bit registers. These registers control the whole peripheral operation.
MPMC Native Port Interface (NPI) bus supporting 32 or 64-bit width. This bus is used for highspeed access to external memory.
Proprietary synchronous 32 or 64-bit wide DMA_IN bus used for data streaming to external memory. This port can stream data in blocks – up to
64 word burst (64-bit only). Maximal sustainable bandwidth at 100MHz NPI_Clk is 200MB/s .
Proprietary synchronous 32 or 64-bit wide DMA_OUT bus used for data streaming from external memory. The bus width is dependant on NPI bus
width. This port can stream data in single beat transfers – word (32-bits), double word (64-bit), 16, 32 and 64-word (64-bit only) per one
transaction. Maximal sustainable bandwidth at 100MHz NPI_Clk is approx. 300MB/s at 32-bits and 600MB/s at 64-bits.

XPS_NPI_DMA and XPS_FX2 custom IP blocks are both necessary to connect (throgh USB connection) host computer's software and TE
USB FX2 module's DRAM. For MB Commands tests, see example 4.

Peripheral internal structure block scheme

XPS_NPI_DMA Core Design Parameters
Feature/Description Parameter Name Allowable Values Default Value VHDL Type

System Parameters

Target FPGA family C_FAMILY spartan3, spartan3e,
spartan3a,
spartan3adsp,
spartan3an, virtex2p,
virtex4, qvirtex4,
qrvirtex4, virtex5

virtex5 string

PLB Parameters

PLB base address C_BASEADDR Valid Address None std_logic_vector

PLB high address C_HIGHADDR Valid Address None std_logic_vector

PLB least significant
address bus width

C_SPLB_AWIDTH 32 32 integer

PLB data width C_SPLB_DWIDTH 32, 64, 128 32 integer

Shared bus topology C_SPLB_P2P 0 = Shared bus
topology

0 integer

PLB master ID bus
Width

C_SPLB_MID_WIDTH log2(C_SPLB_NUM_
MASTERS) with a
minimum value of 1

1 integer

Number of PLB masters C_SPLB_NUM_MASTERS 1 - 16 1 integer

Width of the slave data
bus

C_SPLB_NATIVE_DWIDTH 32 32 integer

Burst support C_SPLB_SUPPORT_BURSTS 0 = No burst support 0 integer

XPS_NPI_DMA Parameters

NPI bus data width C_NPI_DATA_WIDTH 32, 64 32 integer

Byte swap input data C_SWAP_INPUT 0, 1 0 integer

Byte swap output data C_SWAP_OUTPUT 0, 1 0 integer

Writing padding value
if number of bytes does
not match multiple of
packet size

C_PADDING_BE 0, 1 (zeros, ones) 0 integer

XPS_NPI_DMA Core Design Parameters

XPS_NPI_DMA I/O Signal Descriptions
Name Interface I/O Initial State Description

NPI_Clk - I - Memory clock

ChipScope[0:63] - O - Debug port

IP2INTC_Irpt - O 0 Interrupt request
LEVEL_HIGH

Capture_data[(C_NPI_DATA_WIDTH-1):0] DMA_IN I - Sync DMA Input data

Capture_valid DMA_IN I - Sync DMA Input valid strobe

Capture_ready DMA_IN O 0 DMA Input is ready flag

Output_data[(C_NPI_DATA_WIDTH-1):0] DMA_OUT O - DMA Output data,
Sync to NPI_Clk

Output_valid DMA_OUT O 0 DMA Output valid strobe,
sync to NPI_Clk

Output_ready DMA_OUT I 1 External Output ready

NPI_Addr[31:0] MPMC_PIM O zeros NPI address data

NPI_AddrReq MPMC_PIM O 0 NPI address request

NPI_AddrAck MPMC_PIM I - NPI address acknowledge

NPI_RNW MPMC_PIM O 0 NPI read now write

NPI_Size[3:0] MPMC_PIM O 0 NPI packet size
See below for info

NPI_RdModWr MPMC_PIM O 0 NPI read mod write
(not used)

NPI_WrFIFO_Data[(C_NPI_DATA_WIDTH-1):0] MPMC_PIM O zeros NPI write FIFO data vector

NPI_WrFIFO_BE[(C_NPI_DATA_WIDTH/8-1):0] MPMC_PIM O ones NPI write FIFO byte enable mask
(alway ones)

NPI_WrFIFO_Push MPMC_PIM O 0 NPI write FIFO data valid strobe

NPI_RdFIFO_Data[(C_NPI_DATA_WIDTH-1):0] MPMC_PIM I - NPI read FIFO data vector

NPI_RdFIFO_Pop MPMC_PIM O 0 NPI read FIFO data read strobe

NPI_RdFIFO_RdWdAddr[3:0] MPMC_PIM I - NPI read FIFO read write addr
(not used)

NPI_WrFIFO_Empty MPMC_PIM I - NPI write FIFO empty flag

NPI_WrFIFO_AlmostFull MPMC_PIM I - NPI write FIFO almost full flag

NPI_WrFIFO_Flush MPMC_PIM O 0 NPI write FIFO reset

NPI_RdFIFO_Empty MPMC_PIM I - NPI read FIFO empty flag

NPI_RdFIFO_Flush MPMC_PIM O 0 NPI read FIFO reset

NPI_RdFIFO_Latency[1:0] MPMC_PIM O ‘’01’’ NPI read FIFO latency

NPI_InitDone MPMC_PIM I - MPMC init done flag

OTHERS ARE PLBv4.6 SIGNALS PLBv4.6 - - -

XPS_NPI_DMA I/O Signal Descriptions

Writing and reading to/from DMA_IN and DMA_OUT ports
The point to point unidirectional buses use simple handshaking protocol.

When (slave) “ready” signal is high the port is open for writing.
A write is performed when “valid” signal goes high.
The “data” should be valid when valid signal is high.
If “valid” signal goes high and the ready is low then the data are discarded (FIFO_IN only).
The signals are updated on rising edge of clock.

BUS DMA_IN DMA_OUT

 Bus width 32 or 64 bit 32 or 64 bit

 Clock synchronous to NPI_Clk NPI_Clk

“valid” width Multiple cycles possible Multiple cycles possible

XPS_NPI_DMA I/O Signal Descriptions

DMA high speed communication ports principle of operation

XPS_NPI_DMA Core Registers
XPS_NPI_DMA has a full access of a microprocessor to the core functionality through a 9 user 32-bit and 7 IPIF Interrupt registers attached to PLBv4.6
bus.

Base Address +

Offset (hex)

Register Name Access Type Default Value (hex) Description

NPI_DMA_CORE IP Core Grouping

The internal clock for DMA_IN is NPI_Clk.

In this version DMA_OUT can properly throttle transmission using Ready signal only at single beat transfers (Read block size = 0).

C_BASEADDR + 00 CR R/W 0x00000000 Control Register

C_BASEADDR + 04 WSA R/W 0x00000000 Write Start Address Register

C_BASEADDR + 08 WBR R/W 0x00000000 Write Bytes Register

C_BASEADDR + 0C RSA R/W 0x00000000 Read Start Address Register

C_BASEADDR + 10 RBR R/W 0x00000000 Read Bytes Register

C_BASEADDR + 14 RJR R/W 0x00000000 Read Jumps Register

C_BASEADDR + 18 SR Read 0x00000000 Status Register

C_BASEADDR + 1C WCR Read WSA Write Address Counter Register

C_BASEADDR + 20 RCR Read WBR Read Address Counter Register

IPIF Interrupt Controller Core Grouping

C_BASEADDR + 200 INTR_DISR Read 0x00000000 interrupt status register

C_BASEADDR + 204 INTR_DIPR Read 0x00000000 interrupt pending register

C_BASEADDR + 208 INTR_DIER Write 0x00000000 interrupt enable register

C_BASEADDR + 218 INTR_DIIR Write 0x00000000 interrupt id (priority encoder) register

C_BASEADDR + 21C INTR_DGIER Write 0x00000000 global interrupt enable register

C_BASEADDR + 220 INTR_IPISR Read 0x00000000 ip (user logic) interrupt status register

C_BASEADDR + 228 INTR_IPIER Write 0x00000000 ip (user logic) interrupt enable register

XPS_NPI_DMA Core Registers

Details of XPS_NPI_DMA Core Regi sters

The parts of the registers (or the whole registers) with a non-capital designation (e.g. wr_fifo_rst) are usually the names of the HDL signals connected to
the described register.

Control Register (CR)

The Control Register is used to control basic peripheral functions. All the bit flags are assembled here.

Bits Name Description Reset Value

31 rst Peripheral soft reset (not self resettable)

0

The First (LSB) interrupt from user_logic is masked on the left!!

30 wr_fifo_rst

Write FIFO reset (not self resettable) 0

29 rd_fifo_rst Read FIFO reset (not self resettable) 0

28 wr_loop Write loop – continuous transfer 0

27 rd_loop Read loop – continuous transfer 0

26 wr_test

Write test – writes 32bit counter to memory 0

25 xfer_write Write data flag (starts/stops xfer) 0

24 xfer_read Read data flag (starts/stops xfer) 0

20-23 wr_block_size Write block size 0x0

16-19 rd_block_size Read block size 0x0

15 use_rd_jump Enables transpose 0

Control Register bits

Write Start Address Register (WSA)

Here, the user inputs start address for writing transfer. It is an external memory address for the first byte to be written.

wr_start_addr

Write Bytes Register (WBR)

Here, the user inputs the number of bytes to written to memory. It is not necessary to align the number of bytes to block size, since the remaining bytes will
be padded. If the user sets wr_loop to 1 then the WSA+WBR is the maximal address before the address counter jumps to WSA and starts counting again.

wr_xfer_bytes

Read Start Address Register (RSA)

Here, the user inputs start address for reading transfer. It is an external memory address for the first byte to be read.

rd_start_addr

Read Bytes Register (RBR)

Here, the user inputs the number of bytes to be read from the memory. It is not necessary to align the number of bytes to block size, since the remaining
bytes will remain in the RdFIFO. If the user sets rd_loop to 1 then the when the byte counter reaches RBR values jumps to 0 (RSA address) and starts
counting again.

rd_xfer_bytes

It should be aligned to Write block size boundary.

It should be aligned to Read block size boundary.

Read Jumps Register (RJR)

This register is used to input two16bit values to define the reading jumping startegy/algorithm. The read_jump is an address increment between two
consecutive reads. If the user want linear read then this is a number of bytes per read block (4 or 8 for single beat xfer). When rotating (transposing) an
image this should equal to number of bytes in a row. The parameter rows define how many reads should be done before returning to starting
position+block size.

Read Jumps Register (RJR)

Status Register (SR)

In the status register the peripheral reports of the current status.

Bits Name Description Reset Value

31 wr_xfer_done Write xfer done flag (always 0 if wr_loop = '1') 1

30 rd_xfer_done Read xfer done flag (always 0 if wr_loop = 1) 1

24-27 xfer_status Write xfer status (bit 27 = wr_fifo_full) 0

Status Register (SR)

Write Address Counter Register (WCR)

Reading this register returns current WRITE address counter value. It can be used to monitor write transfer progress.

wr_xfer_counter

Read Address Counter Register (RCR)

Reading this register returns current READ address counter value. It can be used to monitor read transfer progress.

rd_xfer_counter

Interrupt registers

With INTR_IPIER register the user can enable/disable peripheral interrupt sources. With INTR_IPISR the user can identify interrupt source. Writing a value
to INTR_IPISR also clears interrupt.

At linear transfer this register in NOT USED.

"Ghost" interrupts

The user must make sure that triggered interrupts will be cleared in a consinstent way (single owner); the user (host computer's
software) . Otherwise the user will trigger "ghost" interrupts which were not triggered by peripheral, but must only clear triggered interrupts
the interrupt controller itself.

Writing 0x7 to INTR_DIER will enable IP interrupt sources and writing 0x80000000 to INTR_DGIER will enable global interrupt.

The image below presents a conection of user logic interrupt to INTR_IPIER and INTR_IPISR.

Conection of user logic interrupt to INTR_IPIER and INTR_IPISR.

Programmin model

Write block size wr_block_size C_NPI_DATA_WIDTH type of transfer Implemented

4 bytes X”0” 32 1 word xfer

8 bytes X”0” 64 2 words xfer

16 bytes X”1” 32-64 4-word cache-line burst

32 bytes X”2” 32-64 8-word cache-line burst

64 bytes X”3” 32-64 16-word burst

128 bytes X”4” 32-64 32-word burst

256 bytes X”5” 64 64-word burst

Write block size available

Read block size rd_block_size C_NPI_DATA_WIDTH type of transfer Implemented

4 bytes X”0” 32 1 word xfer

8 bytes X”0” 64 2 words xfer

16 bytes X”1” 32-64 4-word cache-line burst , not tested

32 bytes X”2” 32-64 8-word cache-line burst , not tested

64 bytes X”3” 32-64 16-word burst

128 bytes X”4” 32-64 32-word burst

256 bytes X”5” 64 64-word burst

Read block size available

Example 1

Example of single write transfer from address 0x1C000000 to 0x1C00FFFF using 32-word burst

1. Write 0x1C000000 to WSA

2. Write 0x00010000 to WBR

In the instruction sequence it is only important that xfer_write or xfer_read are written at the end as they start the transmission.

3. Write 0x00000440 to CR

4. Poll SR until write_xfer_done = 1

Example 2

Example of single linear read transfer from address 0x1C000000 to 0x1C00FFFF using 32-word burst transaction

1. Write 0x1C000000 to RSA

2. Write 0x00010000 to RBR

3. Write 0x00004080 to CR

4. Poll SR until read_xfer_done = 1

Example 3

Example of single transpose read transfer from address 0x1C000000 at image size 750 bytes/row x 480 rows.

1. Write 0x1C000000 to RSA

2. Write 0x00057E40 to RBR

3. Write 0x02EE01DF to RJR (Note 1DF=rows-1)

4. Write 0x00010080 to CR

5. Poll SR until read_xfer_done = 1

In this case the user gets on output port 4 (at C_NPI_DATA_WIDTH = 32) or 8 (at C_NPI_DATA_WIDTH = 64) bytes per every data valid. Further
demultiplexing (downto single pixel size if needed) can be done using a FIFO array (for example OUTPUT_DMA_FIFOS).

For using the software driver read function comments in:

#projec t#(or IP repository)\drivers\xps_npi_dma_v1_00_a\src\xps_npi_dma.c

Example 4 (if Reference Design is used): test XPS_NPI_DMA and XPS_FX2 using MB
Commands

XPS_NPI_DMA and XPS_FX2 custom IP blocks are both necessary to connect (throgh USB connection) host computer's software and TE USB FX2
module's DRAM.

The MB Commands FX22MB_REG0_START_RX, , are used for data throughput and integrity test.FX22MB_REG0_START_TX FX22MB_REG0_STOP

MB Commands require the XPS_I2C_SLAVE custom IP block and a proper (() function in running FX2 interrupt handler i2c_slave_int_handler interrupt.c
on MicroBlaze); the is called to handle the signal interrupt xps_i2c_slave_0_IP2INTC_Irpt. The () function FX2 interrupt handler i2c_slave_int_handler
actually execute the I2C delivered MB Command.

Write test should be executed before read test; otherwise the read test will fail.

https://wiki.trenz-electronic.de/display/TEUSB/FX22MB_REG0_START_RX+command
https://wiki.trenz-electronic.de/display/TEUSB/FX22MB_REG0_START_TX+command
https://wiki.trenz-electronic.de/display/TEUSB/FX22MB_REG0_STOP+command
https://github.com/Trenz-Electronic/TE063X-Reference-Designs/blob/master/reference-TE0630/sw/demo/src/interrupts.c

	TO DELETE XPS_NPI_DMA custom IP core block

