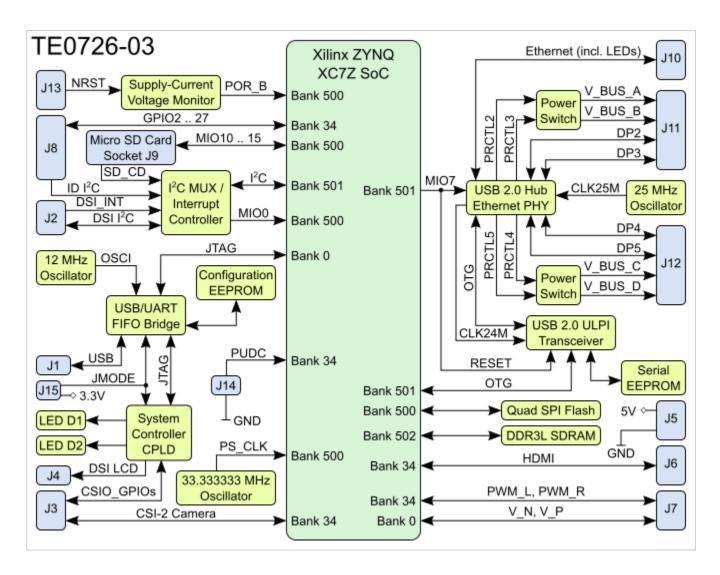
TE0726 TRM

Download PDF version of this document.

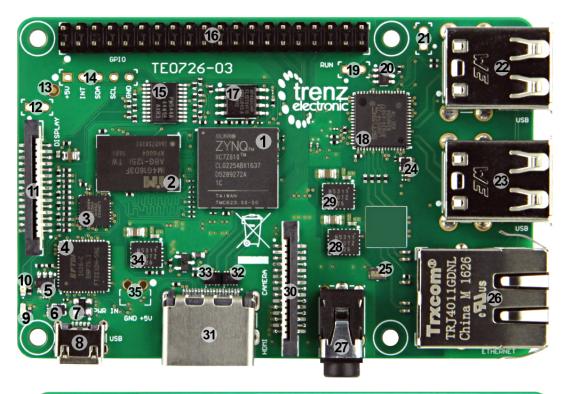
Table of Contents

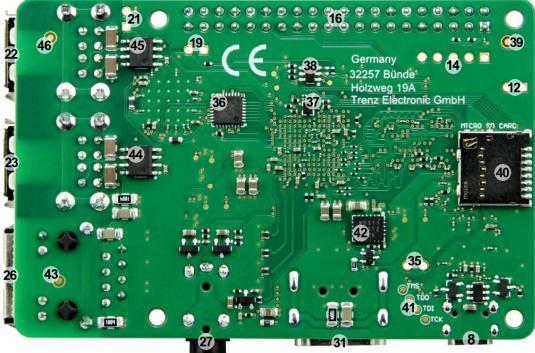
- Overview
 - Key Features
 - Block Diagram
 - Main Components
 - Initial Delivery State
- Signals, Interfaces and Pins
 Camera Serial Interface (CSI-2)
 - Display Serial Interface (DSI)
 - HDMI Interface
 - o Audio Output
 - SD Card Socket
 - FPGA IO Banks Pin Mapping
 - Header J8 Interface Mapping
 - Default MIO Mapping
 - On-board LEDs
- On-board Peripherals
 - System Controller CPLD
 - Quad SPI Flash Memory
 - O DDR3L SDRAM
 - Clocking
 - O Hi-speed USB 2.0 and 10/100 Mbit Ethernet
 - USB to JTAG/UART
 - o 4-Channel I2C Multiplexer
- Boot Process
- Power and Power-On Sequence
 - Power Consumption
 - Power Distribution Dependencies
 - Power Rails and Bank Voltages
- Variants Currently in Production
- Technical Specifications
 - Absolute Maximum Ratings
 - Recommended Operating Conditions
 - Physical Dimensions
 - Weight
- Revision History
 - Hardware Revision History
 - Document Change History
- Disclaimer
 - Data Privacy
 - Document Warranty
 - Limitation of Liability
 - Copyright Notice
 - Technology Licenses
 - Environmental Protection
 - o REACH, RoHS and WEEE

Overview


The Trenz Electronic TE0726 "ZynqBerry" is a industrial-grade Raspberry Pi form-factor compatible FPGA SoM (System on Module) based on Xilinx Zynq-7010 SoC (XC7Z010 System on Chip) with up to 512 MByte DDR3L SDRAM, 4 x USB 2.0 ports, 10/100 Mbit Ethernet port and 16 MByte Flash memory.

Key Features


- Xilinx Zynq XC7Z010-1CLG225C


 - REV3: DDR3L SDRAM (512 MByte) REV2: DDR3L SDRAM (128 512 MByte)
 - REV1: LPDDR2 SDRAM (64 MByte)
- 16 MByte Flash
- Raspberry Pi Model 2 form factor
 LAN9514 USB hub with 10/100 Ethernet
 - 4 x USB 2.0 with power switches
- 10/100 Mbit Ethernet RJ45
 Micro SD card slot with card-detect switch
- HDMI connector
- DSI connector (Display)
 CSI-2 connector (Camera)
 HAT header with 26 I/Os
- Micro-USB
 - power input
 - USB UART
- JTAG ARM- and FPGA-Debug
 3.5 mm stereo audio socket (PWM audio output only)

Block Diagram

Main Components

- Xilinx Zynq XC7Z010 All Programmable SoC, U1
 512 MByte DDR3L SDRAM, U8
 Lattice Semiconductor MachXO2 System Controller CPLD, U11

- 4. Dual high-speed USB to multipurpose UART/FIFO, U3
- 5. 2 Kbit Microwire compatible serial EEPROM, U6
- 6. Low-power, programmable oscillator @ 12.000000 MHz, U7
- 7. Ultra-low capacitance double rail-to-rail ESD protection diode ,U4
- 8. Micro-USB 2.0 B receptacle, J1
- 9. Green LED (GLED), D1
- 10. Red LED (RLED), D2
- 11. DSI LCD connector, J4
- 12. JTAGENB, when low, TDO, TDI, TMS and TCK function as GPIOs, J15
- 13. Fiducial mark PM2
- 14. External I²C bus with interrupt signal and power line, J2
- 15. Low-voltage 4-channel I²C and SMBus multiplexer with interrupt logic, U10
- 16. 2x20 pin 2.54 GPIO header, J8
- 17. 128 Mbit (16 MByte) 3.0V SPI Flash memory, U5
- 18. USB 2.0 Hub and 10/100 Ethernet controller, U2
- 19. External reset
- 20. 2 Kbit Microwire compatible serial EEPROM, U9
- 21. PUDC of Zyng, active low enables internal pull-ups during configuration on all SelectIO pins
- 22. Dual USB A receptacle, J12. Also fiducial mark PM1
- 23. Dual USB A receptacle, J11
- 24. Low power programmable oscillator @ 25.000000 MHz, U13
- 25. Molex's miniature traceability S/N pad for low-cost, unique product identification
- 26. RJ-45 Ethernet connector with 10/100 integrated magnetics, J10. Also fiducial mark PM3
- 27. 3.5mm RCA audio jack, J7
- 28. 1A PowerSoC synchronous buck regulator with integrated inductor (3.3V), U20
- 29. 1A PowerSoC synchronous buck regulator with integrated inductor (1.8V), U19
- 30. ZIF FFC/FPC CSI-2 camera connector, J3
- 31. HDMI connector, J6
- 32. Common mode filter with ESD protection, D8
- 33. Common mode filter with ESD protection, D9
- 34. 1A PowerSoC synchronous buck regulator with integrated inductor (1.35V), U16
- 35. Additional external +5V power supply connector, J5
- 36. Highly integrated full featured hi-speed USB 2.0 ULPI transceiver, U18
- 37. Low-power programmable oscillator @ 33.33333 MHz, U14
- 38. Ultra-low supply current voltage monitor with optional watchdog, U22
- 39. Fiducial mark PM4
- 40. Micro SD memory card connector with detect switch, J9
- 41. JTAG interface, TP1 (TDI), TP3 (TDO), TP5 (TCK), TP7 (TMS)
- 42. 1A PowerSoC synchronous buck regulator with integrated inductor (1.0V), U17
- 43. Fiducial mark PM6
- 44. 0.5A dual channel current-limited power switch, U15
- 45. 0.5A dual channel current-limited power switch, U21
- 46. Fiducial mark PM5

Initial Delivery State

Up on delivery from Trenz Electronic System Controller CPLD is programmed with the standard firmware and FTDI FT2232H EEPROM contains preprogrammed Digilent license needed by Xilinx software tools for JTAG access, all other programmable devices are empty.

Signals, Interfaces and Pins

Camera Serial Interface (CSI-2)

The TE0726-03 module has CSI-2 specification compatible serial camera interface routed from Zyng SoC bank 34 to the connector J3.

FPGA Bank	Zynq Pin	Signal Name	Connected To
34	M10	CSI_D0_P	CSI-2 camera connector J3
34	M11	CSI_D0_N	CSI-2 camera connector J3
34	P13	CSI_D1_P	CSI-2 camera connector J3

34	P14	CSI_D1_N	CSI-2 camera connector J3
34	N11	CSI_C_P	CSI-2 camera connector J3
34	N12	CSI_C_N	CSI-2 camera connector J3

Display Serial Interface (DSI)

The TE0726-03 module has MIPI Alliance DSI specification compatible serial display interface routed from Zyng SoC bank 35 to the connector J4.

FPGA Bank	Zynq Pin	Signal Name	Connected To
35	F13	DSI_D0_R_N	DSI display connector J4
35	F14	DSI_D0_R_P	DSI display connector J4
35	F12	DSI_D1_R_N	DSI display connector J4
35	E13	DSI_D1_R_P	DSI display connector J4
35	E11	DSI_C_R_N	DSI display connector J4
35	E12	DSI_C_R_P	DSI display connector J4

See also section FPGA IO Banks Pin Mapping, pins DSI_XA and DSI_XB.

HDMI Interface

HDMI interface is routed from Zynq SoC bank 34 to the external connector J6 via EMI4192 ESD protector/EMI filters.

FPGA Bank	Zynq Pin	Signal Name	Connected To
34	K12	CEC_B	HDMI connector J6
34	P8	HDMI_TX0_N	HDMI connector J6 via EMI filter/ESD protector
34	P9	HDMI_TX0_P	HDMI connector J6 via EMI filter/ESD protector
34	R10	HDMI_TX1_N	HDMI connector J6 via EMI filter/ESD protector
34	P10	HDMI_TX1_P	HDMI connector J6 via EMI filter/ESD protector
34	R11	HDMI_TX2_N	HDMI connector J6 via EMI filter/ESD protector
34	P11	HDMI_TX2_P	HDMI connector J6 via EMI filter/ESD protector
34	R7	HDMI_TXC_N	HDMI connector J6 via EMI filter/ESD protector
34	R8	HDMI_TXC_P	HDMI connector J6 via EMI filter/ESD protector

Audio Output

Pulse-width modulated stereo audio output is routed from Zynq SoC bank 34 to external 3.5mm socket J7.

FPGA Bank	Zynq Pin	Signal Name	Connected To
34	N7	PWM_L	3.5mm stereo socket J7
34	N8	PWM_R	3.5mm stereo socket J7

SD Card Socket

Micro SD memory card connector J9 with detect switch is connected to the Zynq Soc PS MIO bank 500. See also section Default MIO Mapping.

FPGA IO Banks Pin Mapping

Bank	Zynq Pin	Name Connected To	
34	G14	PUDC	Jumper J14
35	G15	DSI_XA	System Controller CPLD, pin 16
35	F15	DSI_XB	System Controller CPLD, pin 17

Header J8 Interface Mapping

26 PL IO and 2 MIO IOs over I2C mux. All Bank IO voltages are 3.3V.

J8 Pin	Name	Zynq Pin	Zynq Pin	Name	J8 Pin
1	3.3V	-	-	5V	2
3	GPIO2	K15	-	5V	4
5	GPIO3	J14	-	GND	6
7	GPIO4	H12	M12	GPIO14	8
9	GND	-	N13	GPIO15	10
11	GPIO17	G11	H11	GPIO18	12
13	GPIO27	G12	-	GND	14
15	GPIO22	H13	J11	GPIO23	16
17	3.3V	-	K11	GPIO24	18
19	GPIO10	H14	-	GND	20
21	GPIO9	J13	K13	GPIO25	22
23	GPIO11	J15	L15	GPIO8	24
25	GND	-	L14	GPIO7	26
27	MIO49(ID_SDA via TCA9544APWR)			MIO48 (ID_SCL via TCA9544APWR)	28
29	GPIO5	N14	-	GND	30
31	GPIO6	R15	M15	GPIO12	32
33	GPIO13	R13	-	GND	34
35	GPIO19	R12	L13	GPIO16	36
37	GPIO26	L12	M14	GPIO20	38
39	GND	-	P15	GPIO21	40

Default MIO Mapping

Bank 500 MIOs

MIO	Function	Notes		
0	MIO0_INT	Interrupt signal from I ² C MUX.		
1	SPI0_CS	SPI chip select.		
2	SPI0_DQ0/M0	Bi-directional data line 0		
3	SPI0_DQ1/M1	Bi-directional data line 1		
4	SPI0_DQ2/M2	Bi-directional data line 2		
5	SPI0_DQ3/M3	Bi-directional data line 3		
6	SPI0_SCK	SPI clock.		
7	MIO7	RESETB of USB3320 chip, U18		
8	MIO8	System Controller CPLD pin 28		
9	MIO9	System Controller CPLD pin 29		
10	SD_D0	Serial data 0.		
11	SD_CMD	Command/Response.		
12	SD_CLK	Serial clock.		
13	SD_D1	Serial data 1.		
14	SD_D2	Serial data 2.		
15	SD_D3	Serial data 3.		

Bank 501 MIOs

MIO	Function	Notes		
28	OTG-DATA4	ULPI bi-directional data bus.		
29	OTG-DIR	Data bus direction control signal.		
30	OTG-STP	Data throttle signal.		
31	OTG-NXT	Data stream stop.		
32	OTG-DATA0	ULPI bi-directional data bus.		
33	OTG-DATA1	ULPI bi-directional data bus.		
34	OTG-DATA2	ULPI bi-directional data bus.		
35	OTG-DATA3	ULPI bi-directional data bus.		
36	OTG-CLK	ULPI clock.		
37	OTG-DATA5	ULPI bi-directional data bus.		
38	OTG-DATA6	ULPI bi-directional data bus.		

39	OTG-DATA7	ULPI bi-directional data bus.
48	MUX_SCL	I ² C clock to I ² C MUX.
49	MUX_SDA	I ² C data to/from I ² C MUX.
52	MIO52	System Controller CPLD pin 20
53	MIO53	System Controller CPLD pin 21

On-board LEDs

There are two LEDs on TE0726 module:

LED	Signal Name	Color	CPLD Pin	Notes
D1	GLED	Green	5	CPLD bank 3.
D2	RLED	Red	4	CPLD bank 3.

On-board Peripherals

System Controller CPLD

There is a System Controller CPLD chip LCMXO2-256HC from Lattice Semiconductor on-board. Refer to the TE0726 CPLD for more information.

Quad SPI Flash Memory

On-board QSPI flash memory (U5) on the TE0726 is provided by Cypress Semiconductor Serial NOR Flash Memory S25FL127SABMFV10 with 128 Mbit (16 MByte) storage capacity connected to the PS MIO bank (MIO1 ... MIO6) of the Zynq SoC. This non volatile memory is used to store initial FPGA configuration. Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All four SPI data lines are connected to the Zynq PS MIO-bank allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency used

DDR3L SDRAM

The TE0726 SoM is equipped with one DDR3L-1600 SDRAM module with 1 GByte memory density. The SDRAM module is connected to the Zynq SoC's PS DDR controller with 16-bit data bus-width.

Clocking

Signal Name	Clock IC	Default Frequency	Destination IC	Pin	Notes
PS_CLK	U14	33.333333 MHz	U1	C7	Zynq SoC system reference clock.
OSCI	U7	12.000000 MHz	U3	3	FT2232H oscillator input.
CLK24M	U2	24 MHz (see also REFSEL0 2)	U18	26	Reference input/output clock, see datasheet.
CLK25M	U13	25.000000 MHz	U2	61	External 25 MHz crystal input.

Hi-speed USB 2.0 and 10/100 Mbit Ethernet

The TE0726-03 has on-board SMSC LAN9514 controller featuring USB 2.0 hub and 10/100 Mbit Ethernet controller. USB hub has four downstream ports and one upstream port, fully compliant with Universal Serial Bus Specification Revision 2.0. HS (480 Mbps), FS (12 Mbps), and LS (1.5 Mbps) compatible. Upstream port is connected to the SMSC USB3320 hi-speed USB 2.0 ULPI transceiver which has full support for the optional On-The-Go (OTG) protocol.

High-Performance 10/100 Ethernet controller integrated into the same LAN9514 IC is fully compliant with IEEE802.3/802.3u standards, has integrated Ethernet MAC and PHY and supports both 10BASE-T and 100BASE-TX media.

256-byte EEPROM is connected via Microwire to the LAN9514 chip to store MAC address.

USB to JTAG/UART

The TE0726-03 has on-board high-speed USB 2.0 to UART/FIFO FT2232H controller from FTDI with external connection to micro-USB connector J1. There is also a 256-byte EEPROM wired to the FT2232H chip via Microwire bus which holds pre-programmed license code to support Xilinx programming tools.

Do not access the FT2232H EEPROM using FTDI programming tools, doing so will erase normally invisible user EEPROM content and invalidate stored Xilinx JTAG license. Without this license the on-board JTAG will not be accessible any more with any Xilinx tools. Software tools from FTDI website do not warn or ask for confirmation before erasing user EEPROM content.

4-Channel I2C Multiplexer

Zynq MIO pin 48 (MUX_SCL) and pin 49 (MUX_SDA) are connected to the 4-channel I²C multiplexer chip TCA9544A from Texas Instruments having I²C address of 0x70. It has four slave I²C channels which are routed as follows:

Channel	Connected To
0	Connector J8, pin 27 (ID_SDA) and pin 28 (ID_SCL).
1	DSI connector J4, pin 12 (DSI_SDA) and pin 11 (DSI_SCL).
2	HDMI connector J6, pin 16 (SDA) and pin 15 (SCL).
3	CSI-2 camera connector J3, pin 14 (CSI_SDA) and pin 13 (CSI_SCL).

Each slave channel of TCA9544A has its own dedicated interrupt signal in order for the master to detect an interrupt on the INT output pin that can result from any of the slave devices connected to the INT0-INT3 input pins.

Boot Process

Xilinx Zyng devices in CLG225 package do not support SD Card boot directly from ROM bootloader.

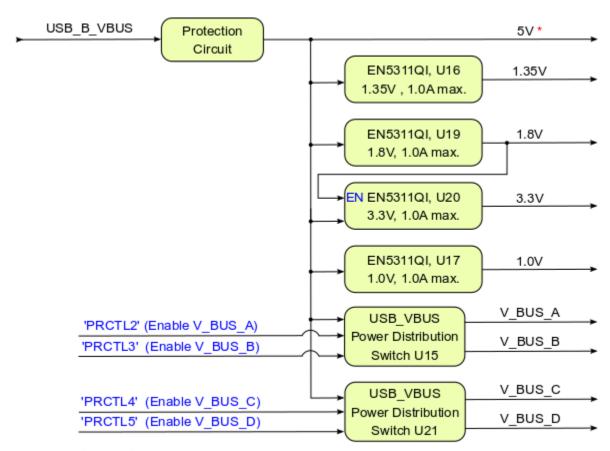
At least FSBL must be loaded from on-board SPI Flash, later all boot process can continue from SD Card. The easiest solution is to let FSBL to load bitstream and u-boot from SPI Flash, and then let u-boot to load Linux or any other OS image from SD Card.

Power and Power-On Sequence

Power Consumption

TE0726 needs one single power source via Micro USB2.0 B socket J1. However, it is recommended to not use any USB equipment below USB standard 2.0 to power the module. Also two-pin header J5 can be used as alternative to feed the 5V power supply voltage.

The maximum power consumption of a module mainly depends on the design which is running on the FPGA.


Xilinx provide a power estimator excel sheets to calculate power consumption. It's also possible to evaluate the power consumption of the developed design with Vivado. See also Trenz Electronic Wiki FAQ.

To power-up a module, 5.0V power supply with minimum current capability of 1A is recommended.

Power Distribution Dependencies

There is no specific power-on sequence, except to achieve minimum current draw, I/Os should be 3-stated at power-on.

There are following dependencies how the power supply voltage (5V nominal) is distributed to the on-board DC-DC converters.

^{* &#}x27;5V' feed also through two-pin header J5 possible

Power Rails and Bank Voltages

Rail/Bank	Name	Voltage	Notes
VCCINT	VCCINT	1.0V	PL internal supply voltage.
VCCPINT	VCCPINT	1.0V	PS internal logic supply voltage.
VCCPLL	VCCPLL	1.8V	PS PLL supply.
VCCBATT_0	VCCBATT_0	1.8V	

VCCAUX	VCCAUX	1.8V	PL auxiliary supply voltage.
VCCPAUX	VCCPAUX	1.8V	PS auxiliary supply voltage.
VCCADC_0	VCCADC_0	1.8V	
RSVDVCC13	RSVDVCC13	3.3V	
0	VCCO_0	3.3V	Configuration bank.
34	VCCO_34	3.3V	PL HR I/O bank.
35	VCCO_35	1.8V	PL HR I/O bank.
500	VCC_MIO_500	3.3V	PS MIO bank.
501	VCC_MIO_501	3.3V	PS MIO bank.
502	VCCO_DDR_502	1.35V	DDR3L SDRAM power-supply.

Variants Currently in Production

TE0726 Variant	Zynq SoC	RAM	Flash	Ethernet	Temperature Range
TE0726-03R	XC7Z010-1CLG225C	128 MByte	16 MByte	-	Commercial grade
TE0726-03M	XC7Z010-1CLG225C	512 MByte	16 MByte	10/100 Mbit	Commercial grade
TE0726-03-07S-1C	XC7Z007S-1CLG225C	512 MByte	16 MByte	10/100 Mbit	Commercial grade

Technical Specifications

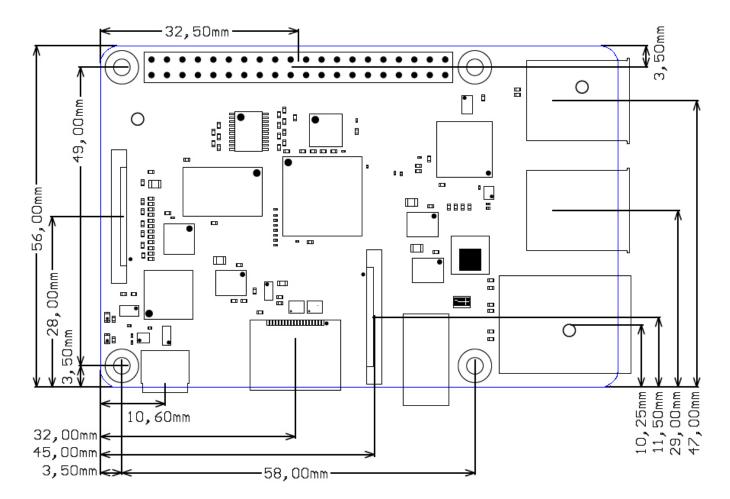
If TE0726 module is powered by micro-USB connector J1 V_{BUS} pin, which voltage level is controlled by supplying host according to the USB standards and should be 5V, there is not much user can control here if using standard USB equipment. However, user can also power the module by applying voltage to the J5 connector from other external sources. In both cases following maximum voltage ratings apply.

Absolute Maximum Ratings

Parameter	Min	Max	Units	Notes
Power supply voltage	4.75	5.25	V	-
J1: USB_V_BUS, J5: 5V				
V _{OUT} of AP2152SG-13	-	VIN + 0.3	V	Output voltage.
I _{LOAD} of AP2152SG-13	-	Internal limited	Α	Maximum continuous load current.
PS MIO supply voltage	-0.5	3.6	V	See Xilinx DS187 datasheet
PS MIO input voltage	-0.4	VCCO_MIO + 0.55	V	VCCO_MIO0_500 and VCCO_MIO1_501.
PL HR I/O banks supply voltage	-0.5	3.6	V	See Xilinx DS187 datasheet
PL HR I/O banks input voltage	-0.4	VCCO + 0.55	V	See Xilinx DS187 datasheet
Storage temperature	-55	+125	°C	-

See also the Xilinx datasheet DS187 for more information about absolute maximum ratings.

Recommended Operating Conditions


Parameter	Min	Мах	Units	Notes
Power supply voltage 4.75 5.5		5.5	V	See AP2152SG-13 datasheet.
J1: USB_V_BUS, J5: 5V				
I _{OUT} of AP2152SG-13	0	500	mA	-
PS MIO supply voltage	1.71	3.465	V	See Xilinx DS187 datasheet
PS MIO input voltage	-0.2	VCCO_MIO + 0.2	V	VCCO_MIO0_500 and VCCO_MIO1_501.
PL HR I/O banks supply voltage	1.14	3.465	V	See Xilinx DS187 datasheet
PL HR I/O banks input voltage	-0.2	VCCO + 0.2	V	See Xilinx DS187 datasheet
Operating temperature	0	70	°C	See LAN9514 datasheet.

The module operating temperature range depends on customer design and cooling solution. Please contact us for options.

Physical Dimensions

- Module size: 40 mm x 30 mm. Please download the assembly diagram for exact numbers.
- Mating height with standard connectors: 8 mm
 PCB thickness: 1.6 mm
- Highest part on PCB: approximately 2.5 mm. Please download the step model for exact numbers.

All dimensions are shown in millimeters. Additional sketches, drawings and schematics can be found here.

Weight

Variant	Weight in g	Note
TE0726-03M		Plain module.
TE0726-03R		Plain module.
TE0726-03-07S-1C		Plain module.

Revision History

Hardware Revision History

Date	Revision	Notes	PCN Link	Documentation Link
2016-05-06	03	-	-	TE0726-03
2016-01-26	02	-	-	TE0726-02

- 01 - -

Hardware revision number is printed on the PCB board next to the module model number separated by the dash.

Document Change History

Date	Revision	Contributors	Description
2017-11-10	📜 Unknown macro: 'metadata'	John Hartfiel	rework J8 header
2017-11-10	v.51	Ali Naseri	Updated Power section added Power-Distribution diagram
2017-05-30	v.40	Jan Kumann	Absolute maximum ratings Layout redesign Wiki link fixed SoC model removed from BD
2017-05-24	V1	Jan Kumann	Initial version.

Disclaimer

Data Privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

Document Warranty

The material contained in this document is provided "as is" and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy244.\$Proxy3572#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com. atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]