
Getting started with Digilent NetFPGA SUME
NetFPGA SUME - a Xilinx Virtex 7 FPGA board for high performance computing and networking systems

Introduction
System Requirements
Infrastructure
Hardware test
Reference Designs
First Reference Switch Project
References
Ordering NetFPGA SUME

Introduction
The NetFPGA project is a group to develop open source hardware and software for rapid prototyping of high-speed, hardware-accelerated networking
systems. The NetFPGA project is enabled by Field Programmable Gate Array (FPGA) technology so that users can process packets at line-rate.

The NetFPGA-SUME board is suitable for high-performance computing and high density networking design. It is powered by Xilinx Virtex-7 690T and is co-
developed by Digilent, Xilinx, the University of Cambridge, and Stanford University. The board has been used in academic and industrial researches
including networks security, software defined networking, high-performance network systems.

This getting started guide covers system requirements, infrastructure, hardware test, reference designs and first reference switch project.

System Requirements
1. Operating Systems

a. You can use any operating system that is supported by Xilinx Vivado Design Suite
b. The NetFPGA team develops strictly on , so the software components are developed for . We recommend users to have .Linux Linux Ubuntu 16.04

2. CAD tools / IDE

a. is required. The recommend version is Xilinx Vivado 2016.4.Xilinx Vivado Design Suite
b. A valid license for Xilinx 10G MAC.

3. Network cables

https://www.xilinx.com/products/design-tools/vivado.html
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://wiki.ubuntu.com/XenialXerus/ReleaseNotes
https://www.xilinx.com/products/design-tools/vivado.html

The NetFPGA-SUME board has four SFP+ connectors for 10G Ethernet. AVAGO AFBR-709SMZ transceivers with Multimode OM3 10Gb Fibre is
recommended

4. Host Motherboard:

You can use the NetPFGA-SUME board both standalone and inside a host.

a. Standalone: You need a micro-USB cable for JTAG chain and serial communication.
b. Host: The motherboard must to support PCI Express Gen3 x8. You can the detailed information at https://github.com/NetFPGA/NetFPGA-SUME-

.public/wiki/Motherboard-Information

Infrastructure
NetFPGA-SUME kit includes

NetFPGA-SUME board
A micro-USB cable
4 unique MAC address stickers (one per 10G SFP+ Ethernet port)

The NetFGPA support package has:

Reusable Verilog modules (IP Cores)

https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/Motherboard-Information
https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/Motherboard-Information

Verification Infrastructure

Simulate designs (from AXI interface)
Run tests against hardware
Test data generation libraries
Build using xSim and Scapy
Use Python scripts for stimuli construction and verification

Build Infrastructure

Bitstream generation using Xilinx tools
Register system that generates addresses for all the registers and memories in a project. Uses python and tcl scripts to generate HDL
code and header files.

Utilities

Register I/O
Software libraries

Hardware test
NetFPGA group has created a few hardware test so that the user can verify the hardware out of the box.

Reference Designs
The NetFPGA community offers a range of open source projects or reference designs. All can be directly downloaded from the git repository. To have
access to reference designs, you must successfully register at . All projects implement basic functionalities of a http://netfpga.org/site/#/SUME_reg_form/
switch, and and can be uploaded on the board.router network interface controller (NIC)

Typically, a project or reference design consists of:

HDL sources (Verilog/VHDL)
Simulation tests
Hardware tests
Optional software

First Reference Switch Project
Some useful reference designs include reference , reference router, reference switch and reference switch lite. For example, NetSUME-FPGA will act NIC
as a learning switch if the reference switch project is loaded on the board. The incoming packets will be transmitted to the corresponding output ports,
based on . Figure 1 shows the internal structure.MAC address

https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/MAC_address

1.
2.

Figure 1

The switching process can be broken down into five stages:

1. Input port (Rx Queues)
2. Input arbitration
3. Forwarding decision and packet modification
4. Output queueing
5. Output port

After the user understand the basic concept and underlying principle, they can modify the switch to encrypt the received data using one time pad method:
make a XOR between the Message and a key K.

User can implement a Verilog module that makes the encryption and decryption of the payload. It was designed as a finite state machine (three states) to
detect the header, which remains as it is, and the payload. This module was packaged as an IP and will be introduced in the switch pipeline. There are two
ways to integrate the obtained IP into the main project. The block diagram (block design) is for someone who is familiar with Vivado block design. The Tcl
script is good for version control or letting user understand Vivado GUI.

Use Vivado GUI and block diagram.
Use the Tcl scripts that were developed by NetFPGA community

After the encryption, Figure 2 shows the modified structure called Crypo-Switch.

Figure 2

Now, user can run the simulation and debug the design. The simulation allows user to test the design without requiring lengthy synthesis process.
Because the NetSUME-FPGA board has a complex FPGA architecture, the bitstream generation process takes more than 45 minutes. The simulation will
be run in Vivado Simulator. To generate Ethernet packets, we used Scapy. The details is at https://github.com/NetFPGA/NetFPGA-SUME-public/wiki

 ./NetFPGA-SUME-Simulations

Once the user validate the design through simulation, they can generate the bitstream and upload it on the board. This approach is suitable for digital
designers who know Verilog or VHDL and aim a high-performance system. For a software engineer or someone who want to parse the incoming data and
take action based on the packet header or payload, they should use . is a high level programming language that is used to describe packet P4 P4
processing logic and to implement forwarding-plane of network elements. Users can describe the logic in and use . The code can be P4 Xilinx SDNet
compiled under and the complied design can be uploaded in NetSUME-FPGA. There is a simple switch example based for NetFGPA SUME Xilinx SDNet
in (/opt/Xilinx/SDNet/<version_number>/data/p4include/sume_switch.p4). Figure 3 shows the switch architecture.Xilinx SDNet

Figure 3

References
NetFPGA Summer School courses: https://www.cl.cam.ac.uk/research/srg/netos/projects/netfpga/workshop/summer-school-2017/
NetFPGA Wiki: https://github.com/NetFPGA/NetFPGA-SUME-public/wiki

Ordering NetFPGA SUME

https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/NetFPGA-SUME-Simulations
https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/NetFPGA-SUME-Simulations
https://en.wikipedia.org/wiki/P4_(programming_language)
https://en.wikipedia.org/wiki/P4_(programming_language)
https://en.wikipedia.org/wiki/P4_(programming_language)
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.cl.cam.ac.uk/research/srg/netos/projects/netfpga/workshop/summer-school-2017/
https://github.com/NetFPGA/NetFPGA-SUME-public/wiki

NetFPGA SUME ordering
NetFPGA SUME academic ordering

https://shop.trenz-electronic.de/en/26261-NetFPGA-SUME-Virtex-7-FPGA-Development-Board
https://shop.trenz-electronic.de/en/26262-NetFPGA-SUME-Virtex-7-FPGA-Development-Board-Academic

	Getting started with Digilent NetFPGA SUME

