TEM0002 TRM

Table of Contents

- Overview
 - Key Features
 - Block Diagram
 - Main Components
 - Initial Delivery State
- Boot Process
- Signals, Interfaces and Pins
 - ° I/Os
 - o Pmods
 - JTAG Interface
 - o SD Card Interface
 - Ethernet Interface
 - o I2C Interface
- On-board Peripherals
 - DDR Memory
 - Gigabit Ethernet PHY
 - Oscillators
 - On-board LEDs
 - On-board Buttons
- Power and Power-On Sequence
 - Power Consumption
 - Power Distribution Dependencies
 - Power Rails
 - Bank Voltages
- Variants Currently In Production
- Technical Specifications
 - Absolute Maximum Ratings
 - Recommended Operating Conditions
 - Operating Temperature Ranges
 - Physical Dimensions
- Revision History
 - Hardware Revision History
 - Document Change History
- Disclaimer
 - Data Privacy
 - Document Warranty
 - Limitation of Liability
 - Copyright Notice
 - Technology Licenses
 - Environmental Protection
 - REACH, RoHS and WEEE

Overview

The Trenz Electronic TEM0002-01 SmartBerry with Raspberry Pi form factor, is an industrial-grade module based on Microsemi SmartFusion2 SoC (System on a Chip). The Module has 128MB DDR3 SDRAM, a Gigabit Ethernet PHY, four Pmods, a GPIO Pin header compatible to the Raspberry Pi pinout and a Micro USB to UART interface. SmartFusion2 combines a 166 MHz Cortex-M3 core with 256 KByte Flash, 80 KByte SRAM and a 12 kLUT FPGA core logic.

Key Features

- Microsemi SmartFusion2 SoC FPGA (M2S010)
- 128 MByte DDR3 SDRAM
- On board power converters for all needed voltages

- 40 pin header (compatible to Raspberry Pi pinout)
- 4 x 12 pin Pmods
- Gigabit Ethernet PHY with RGMII interface
- JTAG and UART via Micro USB
- 3 pin header for Live Probes
- 2 x User Button
- 2 x status LED
- 1 x RGB LED

Additional assembly options are available for cost or performance optimization upon request.

Block Diagram

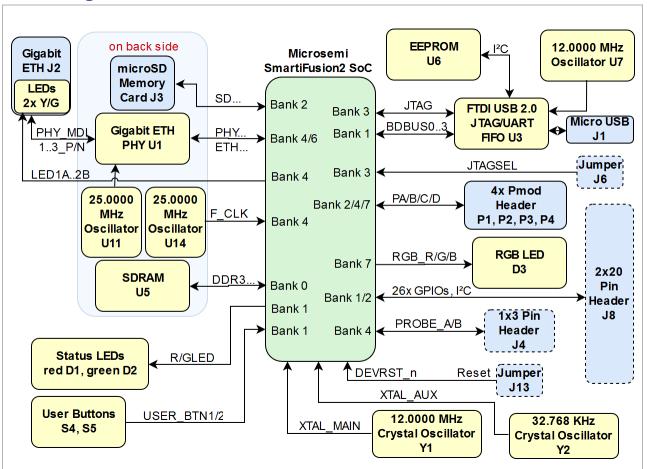
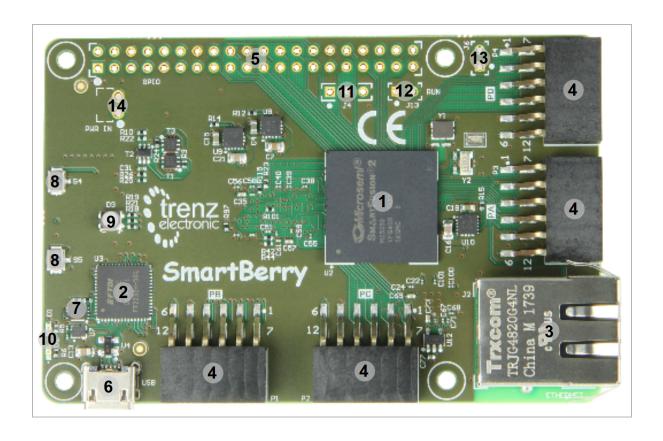



Figure 1: TEM0002-01 block diagram.

Main Components

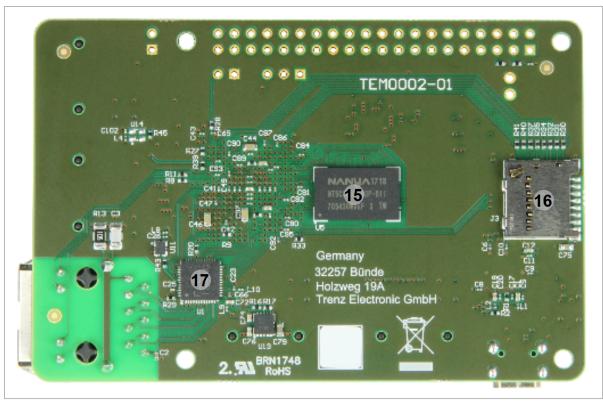


Figure 2: TEM0002-01 main components.

- 1. Microsemi SmartFusion2 SoC FPGA, U2
- 2. USB to UART/FIFO (FTDI FT2232H), U3
- **3.** Gigabit ETH connector, J2
- **4.** 4x 2x6 pin Pmod, P1, P2, P3, P4
- A. ZAZ DITTITION, P., P.2, P.3, P.4
 B. GPIO pin header compatible to Raspberry Pi, J8
 Micro USB 2.0, J1
 EEPROM 4KBIT (M93C66-R), U6

- 2x User Button, S4, S5
 RGB LED, D3
- 10. LED red, D1 and green, D2

- 11. Live Probe pins, J412. Reset jumper, J1313. JTAG select jumper, J6
- 14. Board power header, J5
- 15. 16b DDR3/L SDRAM, U516. MicroSD memory card connector, J317. Gigabit Ethernet PHY, U1

Initial Delivery State

Storage device name	Content	Notes
Microsemi SmartFusion2 SoC FPGA, U2	Demo Design	-
EEPROM, U6	Programmed	FTDI (FT2232H) configuration data.

Table 1: Initial delivery state of programmable devices on the module.

Boot Process

The SmartBerry supports configuration of the system via JTAG by the FTDI USB bridge.

Signals, Interfaces and Pins

I/Os

26 I/O signals provided on the Rasperry Pi compatible header are connected to banks with 3.3V. Dpending on the configuration of the SoC, also GPIOs of the Microprocessor subsystem can be routet to the SoC Pins.

FPGA SoC Signal	SOC Pin	Header Pin	Raspberry Pi Signal
MSIO19PB2	U2-H16	3	GPIO2
MSIO16PB2	U2-J17	5	GPIO3
MSIO2PB2	U2-T18	7	GPIO4
MSIO1PB2	U2-U18	8	GPIO14
MSIO5NB2	U2-R18	10	GPIO15
MSIO11NB2	U2-M17	11	GPIO17
MSIO6PB2	U2-P18	12	GPIO18
MSIO14PB2	U2-L15	13	GPIO27
MSIO17PB2	U2-K16	15	GPIO22
MSIO11PB2	U2-N16	16	GPIO23
MSIO27NB1	U2-B19	18	GPIO24
MSIO25NB1	U2-C20	19	GPIO10
MSIO25PB1	U2-D20	21	GPIO9
MSIO22NB1	U2-F18	22	GPIO25
MSIO20NB2	U2-F20	23	GPIO11
MSIO20PB2	U2-G19	24	GPIO08
MSIO18PB2	U2-H19	26	GPIO07
MSIO28PB1	U2-A20	27	ID_SDA
MSIO28NB1	U2-A19	28	ID_SCL
MSIO16NB2	U2-J18	29	GPIO05
MSIO15NB2	U2-J20	31	GPIO06
MSIO15PB2	U2-K20	32	GPIO12
MSIO14NB2	U2-L16	33	GPIO13
MSIO13NB2	U2-L19	35	GPIO19
MSIO13PB2	U2-L20	36	GPIO16
MSIO8PB2	U2-N20	37	GPIO26
MSIO8NB2	U2-M19	38	GPIO20
MSIO4NB2	U2-N19	40	GPIO21

Table 2: General overview of I/O signals connected to the SoC.

Further I/Os are provided via the Pmod connectors descriebed below.

Pmods

The module provides four 2x6 female Pmod connectors. Two of the headers (P2 and P3) are arranged to use as dual 12 pin Pmod. According to the standard on all four headers Pin 5 and 11 are connected to ground, 6 and 12 to 3.3V.

FPGA SoC Signal	Pin	Pmod Signal	Pmod Pin
MSIO71PB7	U2-F3	PB-01	P1-1
MSIO71NB7	U2-F4	PB-02	P1-2
MSIO68NB7	U2-E3	PB-03	P1-3
MSIO80NB7	U2-H4	PB-04	P1-4
MSIO75PB7	U2-G4	PB-05	P1-7
MSIO75NB7	U2-F5	PB-06	P1-8
MSIO67NB7	U2-E5	PB-07	P1-9
MSIO78NB7	U2-G3	PB-08	P1-10
MSIO79PB7	U2-G1	PC-01	P2-1
MSIO79NB7	U2-F1	PC-02	P2-2
MSIO70NB7	U2-E2	PC-03	P2-3
MSIO64PB7	U2-C1	PC-04	P2-4
MSIO78PB7	U2-G2	PC-05	P2-7
MSIO70PB7	U2-E1	PC-06	P2-8
MSIO68PB7	U2-D2	PC-07	P2-9
MSIO64NB7	U2-C2	PC-08	P2-10
MSIO117NB4	U2-Y16	PA-01	P3-1
MSIO117PB4	U2-Y15	PA-02	P3-2
MSIO112PB4	U2-W13	PA-03	P3-3
MSIO110PB4	U2-V12	PA-04	P3-4
MSIO118PB4	U2-W15	PA-05	P3-7
MSIO112NB4	U2-W14	PA-06	P3-8
MSIO105NB4	U2-Y13	PA-07	P3-9
MSIO104PB4	U2-V11	PA-08	P3-10
MSIO4PB2	U2-P20	PD-01	P4-1
MSIO3NB2	U2-R20	PD-02	P4-2
MSIO2NB2	U2-T19	PD-03	P4-3
MSIO0PB2	U2-V20	PD-04	P4-4
MSIO6NB2	U2-P19	PD-05	P4-7
MSIO3PB2	U2-T20	PD-06	P4-8
MSIO1NB2	U2-U19	PD-07	P4-9
MSIO0NB2	U2-V19	PD-08	P4-10

 Table 3: Overview of Pmod signals connected to the SoC.

JTAG Interface

JTAG access to the SoC components is provided through the micro usb connector via the FTDI usb to UART bridge. Depending on the jumper J6 the JTAGSEL signal SW3 switches the JTAG interface to either the FPGA fabric TAP (OPEN, high) or the Cortex-M3 JTAG debug interface (CLOSED, low). JTAG signals are powered by 3.3V.

FTDI signal	pin	JTAG Signal	Microsemi SmartFusion2 SoC pin
ADBUS0	U3-12	TCK	U2-W19
ADBUS1	U3-13	TDI	U2-V16
ADBUS2	U3-14	TDO	U2-Y20
ADBUS3	U3-15	TMS	U2-V17

Table 4: JTAG interface signals.

SD Card Interface

The SD Card interface is connected to bank 2 of the SoC

FPGA / SoC Pin	Connected To	Signal Name	Notes
U2-H16	J3-9	SD_CD	Card detect switch
U2-N15	J3-7	SD_D0	
U2-G18	J3-8	SD_D1	
U2-R16	J3-1	SD_D2	
U2-R17	J3-2	SD_D3	
U2-R15	J3-3	SD_CMD	
U2-P15	J3-5	SD_CLK	

Table 5: SD Card interface signals and connections.

Ethernet Interface

PHY Pin	Signal	Microsemi SmartFusion2 SoC signal	Pin	Notes
U1-25	ETH_TXCK	MSIOD84PB6	U2-K7	
U1-23	ETH_TXCTL	MSIOD87NB6	U2-K3	
U1-26	ETH_TXD0	MSIOD93PB6	U2-L1	
U1-28	ETH_TXD1	MSIOD97NB6	U2-M2	
U1-29	ETH_TXD2	MSIOD97PB6	U2-M1	
U1-30	ETH_TXD3	MSIOD95PB6	U2-M3	
U1-22	ETH_RRXCK	MSIOD84PB6	U2-J2	
U1-21	ETH_RRXCTL	MSIOD93NB6	U2-K1	
U1-20	ETH_RRXD0	MSIOD86PB6	U2-K5	
U1-18	ETH_RRXD1	MSIOD82PB6	U2-H1	
U1-17	ETH_RRXD2	MSIOD82NB6	U2-H2	
U1-16	ETH_RRXD3	MSIOD83PB6	U2-J4	

U1-31	ETH_MDC	MSIOD99PB6	U2-N1	
U1-33	ETH_MDIO	MSIOD99NB6	U2-N2	
U1-34	ETH_MDINT	MSIOD98PB6	U2-N4	
U1-35	ETH_RST	MSIO114PB4	U2-R13	
U1-36	PHY_RCLKOUT	MSIO102NB4/CCC_NE1_CLKIO	U2-W10	
U1-39	PHY_LED0	MSIO104NB4	U2-U11	
U1-38	PHY_LED1	MSIO116PB4	U2_T14	

Table 6: Ethernet PHY signals and connections.

I2C Interface

There are no on-board I^2C devices. For Raspberry Pi compability the device detection I^2C bus is routed from the header J8-27/28 to Bank 1 U2-A20/A19 (SDA/SCL).

I2C Device	I2C Address	Notes
Header J8	0x50	Device detection/identification.

Table 7: I²C slave device addresses.

On-board Peripherals

DDR Memory

TEM0002 has 1Gb industrial grade DDR3 SDRAM (U5). A 16-bit wide memory bus providing total of 128 MBytes of on-board RAM. Specification is 800 MHz clocking resulting in 1600 Mb/s data rate and timings of 11-11-11 ($CL-T_{RCD}-T_{RP}$).

Gigabit Ethernet PHY

On-board Gigabit Ethernet PHY (J2) is provided by Microsemi VSC8531 chip (U1). The Ethernet PHY RGMII interface is connected to bank 6 of the Microsemi SOC. I/O voltage is fixed at 1.5V. The reference clock input of the PHY is supplied from an external 25.000000 MHz oscillator (U11).

Oscillators

The module has following reference clock signals provided by on-board oscillators:

Clock Source	Schematic Name	Frequency	Clock Destination
Crystal CX3225CA25000D0HSSCC	Y1	25.000 MHz ¹	SmartFusion2 SoC U2 Main XTAL
Crystal ECX-31B	Y2	32.768 KHz	SmartFusion2 SoC U2 AUX XTAL
SiTime SiT8008AI oscillator	U11	25.000000 MHz	Gb Ethernet Copper PHY U1A
SiTime SiT8008AI oscillator	U14	25.000000 MHz	SmartFusion2 SoC U2-Y12 Bank 4

Table 8: Reference clock signals.

¹In REV02, Y1 will be replaced by a 12 MHz crystal.

On-board LEDs

LED	Color	Connected to	SoC FPGA Signal	Description and Notes
D1	Red	U2-G16 Bank 1	MSIO21PB1	
D2	Green	U2-G17 Bank 1	MSIO21NB1	
D3	RGB	U2-H5 Bank 7, U2-F6 Bank 7, U2-H6 Bank 7	MSIO80PB7, MSIO67PB7, MSIO81NB7	
J2	Green, Yellow	U2-Y10 Bank 4, U2-U12 Bank 4	MSIO102PB4, MSIO110NB4	Ethernet: LED1A, LED1B
J2	Green, Yellow	U2-V14 Bank 4, U2-U14 Bank 4	MSIO115PB4, MSIO115PB4	Ethernet: LED2A, LED2B

Table 9: On-board LEDs.

On-board Buttons

Button	Connected to	SoC FPGA Signal
S4	U2-E17 Bank 1	MSIO24PB1
S5	U2-E16 Bank 1	MSIO24NB1

Table 10: On-board Buttons.

Power and Power-On Sequence

There is no specific power on Sequence. Just supply with 5V via the micro USB J1 or the J5 PWR_IN with current rating sufficient for your Design.

Power Consumption

The maximum power consumption of a module mainly depends on the design running on the FPGA.

Power Input	Typical Current
VIN	TBD*
3.3VIN	TBD*

Table 11: Typical power consumption.

Power supply with minimum current capability of ...A for system startup is recommended.

For the lowest power consumption and highest efficiency of the on-board DC-DC regulators it is recommended to power the module from one single 3.3V supply. All input power supplies have a nominal value of 3.3V. Although the input power supplies can be powered up in any order, it is recommended to power them up simultaneously.

Power Distribution Dependencies

^{*} TBD - To Be Determined soon with reference design setup.

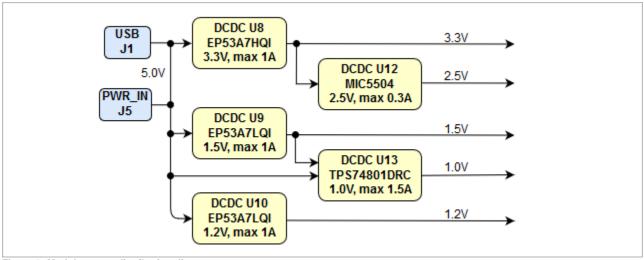


Figure 3: Module power distribution diagram.

Power Rails

Power Rail Name	Connector pin	Direction	Notes
VIN	J5-1	Input	Main supply voltage.
5V	J8-2, J8-4	Output	
3.3V	J8-1, J8-17	Output	
1.5V	-	Output	
1.2V	-	Output	
GND	J5-2, J8-9/25/39/6/14/20/30/34		

Table 12: Module power rails.

Bank Voltages

Bank	Schematic Name	Voltage	Voltage Range
0 (DDR3)	1.5V	1.5V	-
1	3.3V	3.3V	-
2	3.3V	3.3V	-
3	3.3V	3.3V	-
4	3.3V	3.3V	-
5	1.5V	1.5V	-
6	1.5V	1.5V	-
7	3.3V	3.3V	-

Table 13: I/O bank voltages.

Variants Currently In Production

Module Variant	FPGA / SoC	Operating Temperature	Temperature Range	
TEM0002-01	M2S010	0°C to +70°C	commercial	

Table 14: Module variants.

Technical Specifications

Absolute Maximum Ratings

Parameter	Min	Max	Units	Reference Document
VIN supply voltage	-0.3	6.0	V	-
Storage temperature ¹	-25	70	°C	-

Table 15: Module absolute maximum ratings.

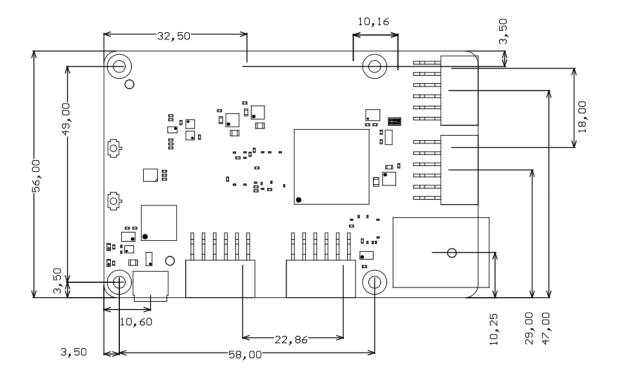
Recommended Operating Conditions

Parameter	Min	Max	Units	Reference Document
VIN supply voltage	2.4	5.5	V	-
Operating temperature ¹	0	70	°C	-

Table 16: Module recommended operating conditions.

Operating Temperature Ranges

Module operating temperature range depends also on customer design and cooling solution. Please contact us for options.


Physical Dimensions

- Module size: 85 mm x 56 mm. Please download the assembly diagram for exact numbers.
- PCB thickness: 1.55 mm
- · Highest part on PCB: top approx. 13.3 mm (Ethernet), bottom 1.57mm (SD-Card)Please download the step model for exact numbers.

All dimensions are given in millimeters.

¹Boundary determined by the specification of the buttons, all other components have at least a range of -40°C to 85°C.

¹Upper bound is determined by the buttons, all other components have at least a upper bound of 85 °C.

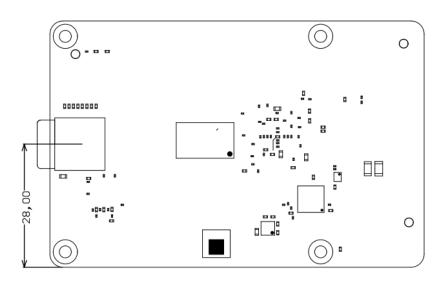


Figure 4: Module physical dimensions drawing.

Revision History

Hardware Revision History

Date	Revision	Notes	PCN	Documentation Link
-	01	Prototypes		

Table 17: Module hardware revision history.

Hardware revision number can be found on the PCB board together with the module model number separated by the dash.

Figure 5: Module hardware revision number.

Document Change History

Date	Revision	Contributors	Description
	Unknown macro: 'metadata'	Martin Rohrmüller	• initial document
Error rendering macro 'page-info'			
Ambiguous method overloading for method jdk.			
proxy279.\$Proxy4022#hasContentLevelPermission.			
Cannot resolve which method to invoke for [null, class			
java.lang.String, class com.atlassian.confluence.pages.			
Page] due to overlapping prototypes between: [interface			
com.atlassian.confluence.user.ConfluenceUser, class			
java.lang.String, class com.atlassian.confluence.core.			
ContentEntityObject] [interface com.atlassian.user.User,			
class java.lang.String, class com.atlassian.confluence.			
core.ContentEntityObject]			
	all	Jan Kumann, John Hartfiel	

Table 18: Document change history.

Disclaimer

Data Privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

Document Warranty

The material contained in this document is provided "as is" and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy279.\$Proxy4022#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com. atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]

02 Sept 2017