Skip to end of metadata
Go to start of metadata

Download PDF version of this document.


Table of Contents

Overview

Trenz Electronic TE0728 is an automotive-grade FPGA module integrating an Automotive Xilinx  Zynq-7 FPGA, two Ethernet transceivers (PHY) , DDR3 SDRAM, QSPI Flash memory for configuration and operation, and powerful switching-mode power supplies for all on-board voltages. Numerous configurable I/Os are provided via rugged high-speed strips. 

Within the complete module only Automotive components are installed.

All this in a compact 6 x 6 cm form factor, at the most competitive price.

Refer to http://trenz.org/te0728-info for the current online version of this manual and other available documentation.

Key Features

  • Xilinx XC7Z020-1CLG484Q (Automotive) [XA7Z014S is available on other assembly options]
    • Package: CL/CLG484
    • Speed Grade: -1
    • Temperature Grade: Expanded (-40 to +128 °C)
  • Dual-Core ARM Cortex-A9 MPCore
  • DDR3 SDRAM, up to 512MB, up to 1066 Mb/s, connected to PS  [different size is available on other assembly options]
  • QSPI Flash memory (with XiP support) [different size is available on other assembly options]
  • Programmable SIT8918A , PS clock generator
  • 2 Kbit serial EEPROM
  • Three user LEDs
  • CAN transceiver (PHY)
  • Temperature compensated RTC (real-time clock)
  • 2 x 100 MBit Ethernet transceiver (PHY)
  • Board to Board (B2B)
    • Plug-on module with 3 x 80-pin Samtec Micro Tiger Eye(TM) high-speed connectors
  • I/O Interface
    • 42x MIO
    • 200x HR
    • 128x PS IO
    • 0x GTP Transceiver
    • 0x GTX Transceiver
  • Power Supply
    • 12 V power supply with watchdog
  • Others:
    • Dimensions: 6 x 6 cm
    • Rugged for shock and high vibration
    • On-board high-efficiency DC-DC converters
    • System management and power sequencing
    • eFUSE bit-stream encryption
    • AES bit-stream encryption
    • Evenly-spread supply pins for good signal integrity

Block Diagram

TE0728 block diagram

Main Components


TE0728 main components


  1. DDR3 SDRAM, U1
  2. Xilinx Automotive XA7Z020-1CLG484Q ,U2
  3. 100 MBit Ethernet transceiver, U3
  4. 100 MBit Ethernet transceiver, U10
  5. User LED Green, D4
  6. Real Time Clock, U7
  7. Standard Clock Oscillators, U5
  8. 64 Kbit I2C EEPROM, U11
  9. CAN Tranceiver, U16
  10. QSPI NOR Flash memory, U13
  11. Standard Clock Oscillators, U14
  12. Low-Quiescent-Current Programmable Delay Supervisory Circuit, U15
  13. Low-Quiescent-Current Programmable Delay Supervisory Circuit, U12
  14. B2B connector , JM2
  15. B2B connector , JM3
  16. B2B connector , JM1

FPGA (U2), DDR3 SDRAM (U1) and QSPI (U13) can be  varied on other assembly option, for more information contact us. 

Initial Delivery State

Storage Device

Symbol

Content

Quad SPI Flash

U13

Not Programmed

EEPROMU11Not Programmed
Initial delivery state of programmable devices on the module

Configuration Signals

Signal

FPGA BankPinB2BSignal StateBoot Mode

Boot_R

500

E4

J2-11

Low

QSPI

HighSD Card
Boot process.

Signal

B2BI/ONote

Reset

J2-7InputComes from Carrier
RST_OUTJ2-9OutputPS_PROB_B
Reset process.

Signals, Interfaces and Pins

Board to Board (B2B) I/Os

TE0728 Module has 3 B2B connectors and every connector has 80 pins (2 row, 40 pins).

FPGA bank number and number of I/O signals connected to the B2B connector:

FPGA BankTypeB2B ConnectorI/O Signal CountVoltage LevelNotes
13HRJ148 Single ended (24 Diff)VCCO_13variable from carrier
500MIOJ14 Singel ended3.3V
501MIOJ238 Singel endedVMIO1variable from carrier
33HRJ334 Single ended (17 Diff)3.3V
35HR

J3

J2

20 Single ended (10 Diff)

22 Single ended (11 Diff)

3.3V
General PL I/O to B2B connectors information

Ethernet PHY

Ethernet pins connections to Board to Board (B2B). Ethernet components ETH1 and ETH2 are connected to B2B connector J3.

SchematicETH1ETH2DirectionNotes
CTREFJ3-57J3-25InMagnetics center tap voltage
TD+J3-58J3-28OutTransfer
TD-J3-56J3-26Out
RD+J3-52J3-22InReceive
RD-J3-50J3-20In
LED1J3-55J3-23OutLED Yellow on carrier, multiple usage-ACK
LED2J3-53J3-21Out
LED3J3-51J3-19OutLED Green on carrier, multiple usage-Link
POWERDOWN/INTL21R20In
RESET_NM15R16InActive low PHY Reset
Ethernet PHY B2B connectors.

CAN PHY

CAN pins connections to Board to Board (B2B).

SchematicB2BDirectionNotes
CANH/CANLJ1-2/J1-4Inout/Inout
CAN B2B connectors.

JTAG Interface

JTAG access to the Xilinx XA7Z020 FPGA through B2B connector JM2.

JTAG Signal

B2B Pin

TMSJ2-12
TDIJ2-10
TDOJ2-8
TCKJ2-6
JTAG pins connection

MIO Pins

MIO PinConnected toB2BNotes
MIO0MIO0-RTC interrupt
MIO1...MIO6

SPI_CS , SPI_DQ0... SPI_DQ3

SPI_SCK

-SPI Flash
MIO7LED RED-LED
MIO8/MIO9Tx/Rx-CAN Transceiver
MIO10...MIO13IO_0 ... IO_3J1GPIO
MIO14/MIO15SCL/SDA-I2C
MIO16...MIO39-J2GPIO
MIO40...MIO48CLK, Cmd, Data0...Data3, wp, cdJ2SD
MIO48PS_MIO48_501J2LED Red on Carrier
MIO49PS_MIO49_501J2LED Yellow on Carrier
MIO50PS_MIO49_501J2LED Green on Carrier
MIO51PS_MIO51_501J2GPIO
MIO52/MIO53UART_Txd / UART_RxdJ2UART transfer/recieve
MIOs pins

On-board Peripherals

Chip/InterfaceDesignatorNotes
QSPI FlashU13---
EEPROMU11EEPROM
RTCU7Real Time Clock
DDR3 SDRAMU1Volatile Memory
EthernetU3, U10Two 100 Mbit Ethernet PHY
CAN TransceiverU16---
User LEDD4Green LED
OscillatorsU14, U7, U5Clock Sources
On board peripherals

Quad SPI Flash Memory

On-board QSPI flash memory is used to store initial FPGA configuration. Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency.

Quad SPI Flash (U7) is connected to the Zynq PS QSPI0 interface via PS MIO bank 500.

MIO PinSchematicNotes
MIO1SPI_CS
MIO2SPI_DQ0/M0
MIO3SPI_DQ1/M1
MIO4SPI_DQ2/M2
MIO5SPI_DQ3/M3
MIO6SPI_SCK/M4
Quad SPI interface MIOs and pins

RTC 

The RTC has an I2C Bus (2-wire SerialInterface) and offers temperature compensated time. The STC-Smart Temperature Compensation is calibrated in the factory and leads to a very high time-accuracy.

RTC interrupt is connected to MIO0 connected to Bank 500 through pin G6.

MIO PinI2C AddressDesignatorNotes
MIO14...150x56U7Slave address
I2C Address for RTC

EEPROM

The Microchip Technology Inc. 24xx64 is a 64 Kbit Electrically Erasable PROM. The device is organized as a single block of 8K x 8-bit memory with a 2-wire serial interface. The 24xx64 also has a page write capability for up to 32 bytes of data. Functional address lines allow up to eight devices on the same bus, for up to 512 Kbits address space.

MIO PinI2C AddressDesignatorNotes
MIO14...150x50U11Slave address
I2C address for EEPROM

LEDs

DesignatorColorConnected toActive Level
D9GreenDONELow
D8REDMIO7High
D4GreenBank 33 - V18High
On-board LEDs

DDR3 SDRAM

The TE0728 SoM has a volatile DDR3 SDRAM, 256Mx16bit (512MB), IC for storing user application code and data. Size of DDR3 can be varied in different assembly versions.

  • Part number: NT5CB256M16CP-DIH
  • Supply voltage: 1.5V
  • Organization: 256M x 16 bits

DDR3 SDRAM can be varied on demand for other assembly options. DDR3 can have density of maximum 512MB due to available addressing. The maximum possible speed for DDR3 SDRAM is 1066 Mb/s.

Ethernet

There are two 100 MBit Extreme Temperature Ethernet provided by Texas Instrumen on the board. Datasheet is provided at TI website. Both PHY's are connected with all I/O Pins to FPGA Bank 34 (VCCIO = 3.3V). PHY Clock 25 MHz sources is provided from MEMS Oscillator. There is no sharing of signals for the two PHY's.

PUDC pin is connected with pull-up to 3.3V those pre-configuration pull-ups are disabled by default. Strapping resistor exist to change the PUDC mode.

BankSignal NameETH1ETH2Signal Description
34ETH-RSTM15R16Ethernet reset, active-low.
34ETH_COLL16P20
34MDCP16T17

Ethernet management clock.

34MDIOM16T16Ethernet management data.
34ETH_TX_D0J22N22Ethernet transmit data 0. Output to Ethernet PHY.
34ETH_TX_D1M17P21Ethernet transmit data 1. Output to Ethernet PHY.
34ETH_TX_D2K21P22Ethernet transmit data 2. Output to Ethernet PHY.
34ETH_TX_D3M22R21Ethernet transmit data 3. Output to Ethernet PHY.
34ETH_TX_ENJ21M21Ethernet transmit enable.
34ETH_RX_D0L17R18Ethernet receive data 0. Input from Ethernet PHY. 
34ETH_RX_D1K18R19Ethernet receive data 1. Input from Ethernet PHY. 
34ETH_RX_D2J18T18Ethernet receive data 2. Input from Ethernet PHY. 
34ETH_RX_D3J20T19Ethernet receive data 3. Input from Ethernet PHY. 
34ETH_RX_DVN17P15Ethernet receive data valid.
Ethernet PHY to Zynq SoC connections

CAN Transceiver

Controller Area Network (CAN) transceivers are designed for use with the Texas Instruments TMS320Lx240x 3.3-V DSPs with CAN controllers. The datasheet is available in TI website. Each CAN transceiver is designed to provide differential transmit capability to the bus and differential receive capability to a CAN controller at speeds up to 1 Mbps. 

BankSignal nameNotes
500D - TxDriver Input
500R - RxReciever Output
CAN Tranciever interface MIOs

Oscillators

DesignatorDescriptionFrequencyUsed as
U14MEMS Oscillator50 MHzPS_CLK
U5MEMS Oscillator25 MHzEthernet PHY Clock
U7RTC (internal oscillator)32.768 KHzCLKOUT of RTC is not connected
Osillators

Power and Power-On Sequence

Power Supply

Power supply with minimum current capability of 2.5A for system startup is recommended.

Power Consumption

Power Input PinTypical Current
VINTBD*
Power Consumption

* TBD - To Be Determined

Power Distribution Dependencies

Power Dependencies

Power on Sequence

The TE07028 SoM meets the recommended criteria to power up the Xilinx Zynq properly by keeping a specific sequence of enabling the on-board DC-DC converters and regulators dedicated to the particular functional units of the Zynq chip and powering up the on-board voltages. When the U8 and U9 generates PWRGD signal, it turns on the U4 which generates PWRGD_3.3V, it turns on the U6 and it generates PWROK signal which is connected to MR. Whenever the supply voltage for U12 drops down below the threshold it resets the system. Actually it resets the system when all regulators are working.

Power On Sequence

Voltage Monitor Circuit

The microprocessor supervisory circuits monitor system voltages asserting an open-drain RESET signal when the SENSE voltage drops below a preset threshold or when the manual reset (MR) pin drops to a logic low. The RESET output remains low for the user adjustable delay time after the SENSE voltage and MR return above their thresholds. Datasheet is available in Texas Instruments website.

Voltage Monitor Circuit

Power Rails

Power Signal

B2B

JM1 Pin

B2B

JM2 Pin

B2B

JM3 Pin

DirectionNotes
VIN1,3--InputSupply voltage from carrier board.
VCCO_1339--Input
VBATT-1-OutputRTC Supply voltage
3.3V19425,57OutputInternal 3.3V voltage level.
VMIO

-

2
InputVariable and supplied by carrier

1.8V

-5-OutputInternal 1.8V voltage level.
Module power rails.

Bank Voltages

Bank          

Schematic Name

Voltage

I/O TypeNotes
500VCCO_MIO0_5003.3VMIO
501

VCCO_MIO1_501

2.5V or 3.3VMIOsupplied by carrier.
502VCCO_DDR_5021.5VDDR3
13VCCO_131.8V or 3.3VHRSupplied by the carrier board. J1
333.3V3.3VHRSupplied by carrier board. J3
343.3V3.3VHR


353.3V3.3VHR

Supplied by the carrier board. J2, J3

Zynq SoC bank voltages.

Board to Board Connectors

6 x 6 modules use two or three Samtec Micro Tiger Eye Socket Strip on the bottom side.
  • 3 x REF-189018-01 (compatible to TEM-140-02-03.0-H-D-A ), (80 pins, "40" per row)


Connector SpecificationsValue
Insulator materialBlack Liquid Crystal Polymer
Stacking height6 mm
Contact materialPhosphor-bronze
PlatingAu or Sn over 50 μ" (1.27 μm) Ni
Current rating2.9 A per pin (2 pins powered)
Operating temperature range-55 °C to +125 °C
RoHS compliantYes
Connector specifications.
Connector Mating height

When using the same type on baseboard, the mating height is 6mm. Other mating heights are possible by using connectors with a different height

Order numberConnector on baseboardcompatible toMating height
26056
REF-189018-01TEM-140-02-03.0-H-D-A6 mm

SEM-140-02-03.0-H-D-ATEM-140-02-03.0-H-D-A6 mm
Connectors.

The module can be manufactured using other connectors upon request.

Connector Speed Ratings

The LSHM connector speed rating depends on the stacking height; please see the following table:

Stacking heightSpeed rating
6 mm, Single-Ended12 GHz
10 mm, Differential

17 GHz

6 mm, Single-Ended14.5 GHz
10 mm, Differential17.5 GHz
Speed rating.
Current Rating

Current rating of  Samtec Micro Tiger Eye Connector™ LSHM B2B connectors is 2.9A per pin (2 adjacent pins powered).

Connector Mechanical Ratings
  • Shock: 100G, 6 ms Sine
  • Vibration: 7.5G random, 2 hours per axis, 3 axes total


Manufacturer Documentation

  File Modified
PDF File SEM-140-02-03.0-H-D-A.pdf 11 02, 2019 by Pedram Babakhani
PDF File TEM-140-02-03.0-H-D-A.pdf 11 02, 2019 by Pedram Babakhani

Technical Specifications

Absolute Maximum Ratings

SymbolsMinMaxUnitDescription
VIN supply voltage-0.365VTPS54260-Q1 datasheets.
VMIO-0.53.6VPS MIO I/O supply voltage
VCCO-0.53.6VPL supply voltage for HR I/O banks
Storage Temperature-40+85°C
Absolute maximum ratings

Recommended Operating Conditionse

SymbolMinMaxUnitsReference Document
VIN supply voltage3.560VTPS54260-Q1 datasheets.
VMIO1.713.465VSee Xilinx DS187 data sheet.
VCCO1.143.465VSee Xilinx DS187 datasheet.
Operating Temperature-40+105°C
Recommended operating conditions

Physical Dimensions

  • Module size: 60 mm × 60 mm.  Please download the assembly diagram for exact numbers.

  • Mating height with standard connectors: 7 mm.

  • PCB thickness: 1.6 mm.

Physical Dimension

Currently Offered Variants 

Trenz shop TE0728 overview page
English pageGerman page
Trenz Electronic Shop Overview

Revision History

Hardware Revision History

Product changes can be seen in PCN page.

DateRevisionChanges

 2016-08-18

04
  • U1 DDR3 IC changed from NT5CB256M16CP-DIH to NT5CC256M16CP-DIH
  • Net DDR3-ODT0: added series resistor R55
  • Added Traceability pad
  • Net PS-POR-B: added pull-down resistor R56
 2015-12-0103
  • ...
2015-06-1202
  • ...
2015-03-0301
  • ...
Hardware Revision History

Hardware revision number is printed on the PCB board next to the module model number separated by the dash.

Document Change History

DateRevisionContributorDescription

Pedram Babakhani

  • initial release

--

all

Pedram Babakhani , John Hartfiel , Thorsten Trenz

  • --
Document change history.

Disclaimer

Data Privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

Document Warranty

The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.


  • No labels