...
eMMC Flash memory device (U28) is connected to the Zynq PS MIO bank 501 pins MIO46..MIO51. eMMC chips MTFC4GMVEA-4M IT (Flash NAND-IC 2x 16 Gbit) is used with 4 GByte of memory density.
...
By default TE0783-01 module has two 16-bit wide IM (Intelligent Memory) IM4G16D3FABG-125I DDR3L SDRAM (DDR3-1600 Speedgrade) connected to the PS DDR memory bank 502, the chips are arranged into 32-bit 32bit wide memory bus providing total of 1 GBytes of on-board RAM.
Another 4 chips are arranged into 64bit wide memory bus prodivding total of 2 GByte on-board RAM connected to the PL HP banks 34,35,36.
One quad SPI compatible serial bus Flash memory (U38) for FPGA configuration file storage is provided by Spansion S25FL256SAGBHI20 with 256 Mbit (32 MByte) memory density. After configuration completes the remaining free memory can be used for application data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths to be used. The maximum data transfer rate depends on the bus width and clock frequency.
...
Power supply with minimum current capability of 3A 4A for system startup is recommended.
...
* TBD - To Be Determined soon with reference design setup.
Single 3.3V power supply with minimum current capability of 4A for system startup is recommended.
For the lowest power consumption and highest efficiency of the on-board DC-DC regulators it is recommended to power the module from one single 3.3V supply. All input power supplies should have a nominal value of 3.3V. Although the input power supplies can be powered up in any order, it is recommended to power them up simultaneously.
Warning |
---|
To avoid any damage to the module, check for stabilized on-board voltages should be |
Warning |
To avoid any damage to the module, check for stabilized on-board voltages should be carried out (i.e. power good and enable signals) before powering up any Zynq's I/O bank voltages VCCO_x. All I/Os should be tri-stated during power-on sequence. |
...
anchor | Figure_3 |
---|---|
title | Figure 3: TE0783-01 Power Distribution Diagram |
...
The Trenz TE0783 SoM is equipped with two quad DC-DC voltage regulators to generate required on-board voltage levels 1V, 3.3V, 1.8V, 1.2V_MGT, 1V_MGT. Additional voltage regulators are used to generate voltages 3.3V_SB, 1.5V, VTT, VTTREF for PS and PL memory bank, 1.8V_MGT and VCCAUX_IO.
The power supply voltage 'C3.3V' of System Controller CPLD of the SoM have to be externally supplied with 3.3V nominal.
There are following dependencies how the initial voltages of the power rails on the B2B connectors are distributed to the on-board DC-DC converters, which power up further DC-DC converters and the particular on-board voltages
The TE0820 SoM meets the recommended criteria to power up the Xilinx Zynq chip properly by keeping a specific sequence of enabling the on-board DC-DC converters dedicated to the particular functional units of the Zynq chip and powering up the on-board voltages.
Following diagram clarifies the sequence of enabling the particular on-board voltages, which will power-up in descending order as listed in the blocks of the diagram:
Scroll Title | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||
|
...
It is important that all carrier board I/Os are 3-stated at power-on until System Controller CPLD sets PGOOD signal high (B2B connector JM1, pin 30), or 3.3V is present on B2B connector JM2 pins 10 and 12, indicating that all on-module voltages have become stable and module is properly powered up.
...
See also Xilinx datasheet DS191 for additional information. User should also check related base board documentation when intending base board design for TE0783 module.
Power-on sequence is handled by the System Controller CPLD using "Power good"-signals from the voltage regulators:
Scroll Title | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||
|
Power Rail Name on B2B Connector | J1 Pins | J2 Pins | J3 Pins | Direction | Notes |
---|---|---|---|---|---|
VIN | - | 165, 166, 167, 168 | - | Input | external power supply voltage |
C3.3V | - | 147, 148 | - | Input | external 3.3V power supply voltage |
3.3V | - | 111, 112, 123, 124, 135 136 169, 170, 171, 172 | - | Output | internal 3.3V voltage level |
1.8V | 169, 170, 171, 172 | - | - | Output | internal 1.8V voltage level |
VCCIO_10 | - | - | 99, 100 | Input | high range I/O bank voltage |
VCCIO_11 | - | - | 159, 160 | Input | high range I/O bank voltage |
VCCIO_12 | - | 159, 160 | - | Input | high range I/O bank voltage |
VCCIO_13 | - | 99, 100 | - | Input | high range I/O bank voltage |
VCCIO_33 | 99, 100 | - | - | Input | high performance I/O bank voltage |
VCCIO_34 | 159, 160 | - | - | Input | high performance I/O bank voltage |
VBAT_IN | - | - | 124 | Input | backup battery voltage |
...