Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin
Scroll Ignore

Download PDF Version of this Document.

 

Scroll pdf ignore

Table of Contents

Table of Contents
maxLevel5

Overview

Scroll Only (inline)
Online version of this manual and other related documents can be found at https://wiki.trenz-electronic.de/display/PD/TE0600

Trenz Electronic GigaBee XC6SLX series are industrial-grade FPGA micromodules integrating a leading-edge Xilinx Spartan-6 LX FPGA, Gigabit Ethernet transceiver (physical layer), two independent banks of 16-bit-wide 128/512 MBytes DDR3 SDRAM, 16 MBytes SPI Flash memory for configuration and operation, and powerful switch-mode power supplies for all on-board voltages. A large number of configurable I/Os is provided via robust board-to-board (B2B) connectors.

...

All this on a tiny footprint, smaller than half a credit card, at the most competitive price.

Block diagram

Image RemovedImage Added

Block diagram of the GigaBee XC6SLX board

Main components

Pictures were photographed from revision 3 and serve for informational purposes only.

Top side:

  • Xilinx Spartan-6 LX FPGA
  • clock generator
  • 10/100/1000 Mbps Ethernet PHY
  • protected 1-Wire EEPROM
  • DDR3-SDRAM
  • DC-DC converters

...

  • Industrial-grade Xilinx Spartan-6 LX FPGA micromodule (LX45 / LX100 / LX150)

  • 10/100/1000 tri-speed Gigabit Ethernet transceiver (PHY)

  • 2 x 16-bit-wide 1 Gb (128 MB) or 4 Gb (512 MB) DDR3 SDRAM

  • 128 Mb (16 MB) SPI Flash memory (for configuration and operation) accessible through:

  • 1 kb protected 1-Wire EEPROM with SHA-1 Engine

  • JTAG port (SPI indirect)

  • FPGA configuration through:

    • B2B connector

    • JTAG port

    • SPI Flash memory

  • Plug-on module with 2 × 100-pin high-speed hermaphroditic strips

  • Up to 52 differential, up to 109 single-ended (+ 1 dual-purpose) FPGA I/O pins available on B2B strips

  • 46.0 A 0 A x 1.2 V 2 V power rail

  • 3.0 A x 1.5 A x 1.5 V 5 V power rail

  • 2x 1A x 2.5V power rail
  • 125 MHz reference clock signal

  • Single-ended custom oscillator (option)

  • eFUSE bit-stream encryption (LX100 or larger)

  • 1 user LED

  • Evenly-spread supply pins for good signal integrity

...

Storage device name

Content

Notes

SPI Flash memory

Blinky Demo

 


protected 1-Wire EEPROM

not programmed 


Power Consumption

Power consumption of GigaBee XC6SLX modules highly depend on the FPGA design implemented. Some typical power consumptions are provided below for the following reference systems:

  • Boards – GigaBee XC6SLX 45/100/150

  • Base board – TE0603-02

  • Power supply – 5 V from 5 V for baseboard

  • Connected Gigabit Ethernet cable

...

Board power supply diagram

Image RemovedImage Added

Power Supply Sources

...

FPGA VCCIO power options are shown below. Default values for configurable voltages are shown in braces.

BankSupply voltage
B0VCCIO 0

VCCIO0 (3.

3 V

3V)

B1VCCIO 1 VCCIO1 (1.5 V5V)
B2VCCIO2 (3.3 V3V)
B3VCCIO3 (1.5 V5V)

Bank 0 power supply VCCIO 0 VCCIO0 can be configured by user to 3.3 V3 V, 2.5 V 5 V or 1.5 V5 V, see Chapter VCCIO0 Power Rail. Bank Banks 1 and 3 VCCIO supply voltage is configured to 1.5 V 5 V to communicate with DDR3 SDRAM memory chip.

...

3.3V Power Rail

It is the main internal power rail and must be supplied from an external power source.

It supplies the other following power rails:

  • 1.2V / 4 A 6A on-board high-efficiency switching voltage regulator;
  • 1.5V / 1.5 A 3A on-board high-efficiency switching voltage regulator;
  • 2.5V 0.8 A 1A linear voltage regulator;
  • VCCIO0 power rail (option) (: if zero-resistor R80 is not populated and zero-resistor R79 is populated).
1.2V Power Rail

It is converted from the 3.3V rail by a switching voltage regulator and can provide up to 4.0 A 6A to:

  • FPGA VCCINT power supply pins;
  • Ethernet PHY;
  • J1 connector.
1.5V Power Rail

It is converted from the 3.3V rail by a switching voltage regulator and can provide up to 1.5 A 3A to:

  • DDR3 SDRAM;
  • Vref1 / Vref2 DDR3 SDRAM reference voltages;
  • FPGA bank banks 1 and 3 VCCO;
  • J1 J2 connector.
2.5V Power Rail

It is converted from the 3.3V rail by a linear voltage regulator and can provide up to 0.8 A 1A to:

  • VCCAUX power rail;
  • Ethernet physical layer;
  • J1 connector;
  • J2 connector VCCIO0 power rail (option: if zero-resistor R80 is populated and zero-resistor R79 is not populated).
VCCAUX Power Rail

It is converted from the 3.3V rail by a linear voltage regulator and can provide up to 0.8 A 1A to:

  • FPGA auxiliary circuits;
  • J2 connector.
VCCIO0 Power Rail

There are 4 options to supply this rail:

  1. from 3.3 V power rail (if zero-resistor R79 is populated1 and R80 is not);
  2. from 2.5 V power rail (if zero-resistor R80 is populated and R79 is not);
  3. from 1.5 V power rail (if zero-resistors R79 and R80 are not populated and VCCIO0 connected to 1.5 V power rail);
  4. from an external power source through J2 B2B connector (pins 1, 3, 5, 7, 9) (if R79 and R80 are not populated)

It supplies:

  • FPGA bank 0 VCCO.

Figure below show simplified schematic of power options. Dashed resistors are not populated by default.

...

power-rail
name

nominal
voltage(V)

maximum
current (A)

power
source

system
supply

user
supply

3.3V3.3

2.4
(3.3 option)

J1, J2module

J1 (≤1.2 A)
J2 (≤1.2 A,
≤2.1 option)

2.5V2.51.0.83.3V ? linearEthernet

J1 (≤0.3 A)
J2 (option)

1.5V1.513.503.3V ? switch

DDR3 SDRAM
VCCO (1+3)

J1 (≤0.3 A)
1.2V1.246.03.3V ? switch

VCCINT
Ethernet

J1 (≤0.6 A)
VCCAUX2.51.0.83.3V ? linearFPGAJ2 (≤0.3 A)
VCCCIO01.2, 1.5, 1.8, 2.5, 3.30.9J2 or 2.5V or 3.3VVCCO (0)J2 (≤0.9 A)

Power Supervision

...

Board-to-board Connectors

Include Page
4 x 5 SoM LSHM B2B Connectors
4 x 5 SoM LSHM B2B ConnectorsIN:Samtec LSHMIN:Samtec LSHM

EPROM

GigaBee XC6SLX board contains a Maxim DS2502-E48 node address chip with factory-programmed valid MAC-48 address and 768 bits of OTP-EPROM memory for user data.

...

For more information see Winbond W25Q128FV W25Q128JVEIQ (W25Q128BV till REV 02or W25Q128FV in old revisions) product overview.

Flash can be programmed in several ways:

...

Note
titleCaution

Note: For correct generation start, PHY should receive reset pulse. Recommended way to do it it's to connect PHY reset signal  (ETHERNET_PHY_RST_N) to LOCKED output of corresponding DCM (DCM which use 125 MHz from PHY).

The module also provides the footprint for custom 3.3 V additional 3.3 V single-ended oscillator (U12) which can be installed as an option used as a system and user clock for the FPGA (FPGA input pin Y13).

User LED

...

Unused IOB Pins option selection. 


In the standard assembly, the /WDO (watchdog output) line is left unconnected1 and the only possibility to reset the module is by driving the /MR (master reset) line active (low) through pin 18 of connector J2.

...

FPGA BankSingle-endedDifferentialTotalVCCIO
Bank 012245VCCIO 0 VCCIO0 (3.3 V3V)
Bank 11613VCCIO 1 VCCIO1 (1.5 V5V)
Bank 232145VCCIO2 (3.3 V3V)
Bank 3036VCCIO3 (1.5 V 5V)

552109 

B2B signals count

Pin Labeling

...

Most pins of B2B connectors J1 and J2 are general-purpose, user-defined I/O pins (GPIOs). There are, however, up to 8 different functional types of pins on the TE0600, as outlined in Table below. In pin-out tables Table 11 and Table 12, the individual pins are colour-coded according to pin type as in Table below. 


TE0600 pin types

type
colour code
description
DIOUnrestricted, general-purpose differential user-I/O pin.
SIOUnrestricted, general-purpose user-I/O pin.
CONFIGDedicated configuration signals.
PWRMGMTControl and status signals for the power-saving Suspend mode.
JTAGDedicated JTAG signals.
GNDDedicated ground pin. All must be connected.
TETrenz Electronic specific pin type.
See the description of each pin in the user manual for additional information on the corresponding signals.
POWPower signals.
SPISPI signals.
PHYEthernet PHY signals.

...

External Bank 2 differential clock connection

TE0600 -02 module have optional connection to FPGA bank 2 differential clock input pins. To provide connection from B2B_B2_L41_P signal to Y13 FPGA pin, zero-resistor R69 should be soldered. To provide connection B2B_B2_L41_N signal to AB13 FPGA pin, zero-resistor R81 should be soldered. Note that in this case optional user oscillator U13 can't be used.

...

J1 pinNetType

FPGA pin

Net LengthJ1 pinNetTypeFPGA pinNet Length
13.3VPOW--2GNDGND--
33.3VPOW--4PHY_MDI0_PPHY--
53.3VPOW--6PHY_MDI0_NPHY--
73.3VPOW--8GNDGND--
93.3VPOW--10PHY_MDI1_PPHY--
113.3VPOW--12PHY_MDI1_NPHY--
133.3VPOW--14PHY_AVDDPHY--
153.3VPOW--16PHY_MDI2_PPHY--
17PHY_L10PHY--18PHY_MDI2_NPHY--
19PHY_L100PHY--20GNDGND--
21PHY_L1000PHY--22PHY_MDI3_PPHY--
23PHY_DUPPHY--24PHY_MDI3_NPHY--
25PHY_LED_TXPHY--26GNDGND--
27PHY_LED_RXPHY--28ENTE--
29GNDGND--30INITCONFIGT6-
31B2B_B2_L57_NDIOAB4812.66mm3056mm32B2B_B2_L32_NSIOAB1189.12mm2307mm
33B2B_B2_L57_PDIOAA4912.84mm3446mm34GNDGND--
35B2B_B2_L49_NDIOAB6810.66mm9076mm36B2B_B2_L60_PDIOT7912.96mm8674mm
37B2B_B2_L49_PDIOAA6911.58mm4038mm38B2B_B2_L60_NDIOR71113.16mm3583mm
392.5VPOW--40B2B_B2_L59_NDIOR81113.42mm4941mm
411.2VPOW--42B2B_B2_L59_PDIOR91113.36mm4584mm
431.2VPOW--44GNDGND--
45B2B_B2_L48_NDIOAB7914.98mm447mm46B2B_B2_L44_NDIOY101113.34mm4331mm
47B2B_B2_L48_PDIOY71014.98mm6069mm48B2B_B2_L44_PDIOW101013.21mm0478mm
49B2B_B2_L45_NDIOAB81011.60mm3986mm50B2B_B2_L42_NDIOW1179.52mm889mm
51B2B_B2_L45_PDIOAA811.053mm642mm52B2B_B2_L42_PDIOV11810.36mm2701mm
53GNDGND--54GNDGND--
55B2B_B2_L43_NDIOAB913.75mm1392mm56B2B_B2_L18_PDIOV13710.94mm5384mm
57B2B_B2_L43_PDIOY91213.97mm5123mm58B2B_B2_L18_NDIOW13610.96mm0455mm
59B2B_B2_L41_NDIOAB10, AB131015.33mm7999mm60B2B_B2_L8_NDIOU16912.92mm2993mm
61B2B_B2_L41_PDIOAA10, Y131116.01mm1771mm62B2B_B2_L8_PDIOU17912.94mm2993mm
63GNDGND--64GNDGND--
65B2B_B2_L21_PDIOY151314.12mm8399mm66B2B_B2_L11_PDIOV17810.31mm5343mm
67B2B_B2_L21_NDIOAB151214.37mm6254mm68B2B_B2_L11_NDIOW17710.29mm1532mm
69B2B_B2_L15_PDIOY171413.20mm2958mm70B2B_B2_L6_PDIOW1879.40mm5851mm
71B2B_B2_L15_NDIOAB1713.77mm1454mm72B2B_B2_L6_NDIOY1869.94mm1811mm
73GNDGND--74GNDGND--
75B2B_B2_L31_NSIOAB121214.30mm3436mm76B2B_B2_L5_PDIOY1968.18mm398mm
77SUSPENDSYSN151921.23mm1709mm78B2B_B2_L5_NDIOAB1968.12mm3535mm
79VBATTCONFIGR17-80B2B_B2_L9_NDIOV18810.43mm2621mm
81VFSCONFIGP16-82B2B_B2_L9_PDIOV19810.36mm1752mm
83RFUSECONFIGP15-84GNDGND--
85AWAKESYST191416.15mm1634mm86B2B_B2_L4_NDIOT171113.88mm4321mm
87CSO_BSPIT5-88B2B_B2_L4_PDIOT181113.96mm8014mm
89GNDGND--90GNDGND--
91CCLKSPIY21-92B2B_B2_L29_NSIOY121315.58mm9734mm
93MISOSPIAA20-94B2B_B2_L10_NDIOR151718.01mm4735mm
95MOSISPIAB20-96B2B_B2_L10_PDIOR161618.97mm3045mm
97MISO3SPIU13-98B2B_B2_L2_NDIOAB2158.06mm425mm
99MISO2SPIU14-100B2B_B2_L2_PDIOAA2168.19mm4085mm

J2 Pin-out

J2 Pin-out

J2 pinNetTypeFPGA pinNet LengthJ2 pinNetTypeFPGA pinNet Length
1VCCIO0POW--23.3VPOW--
3VCCIO0POW--43.3VPOW--
5VCCIO0POW--63.3VPOW--
7VCCIO0POW--83.3VPOW--
9VCCIO0POW--103.3VPOW--
11B2B_PROGBCONFIG--123.3VPOW--
13HSWAPENCONFIGA3-14B2B_B0_L1SIOA49.017mm4715mm
15B2B_B3_L60_NDIOB157.44mm5418mm16PFITE--
17B2B_B3_L60_PDIOB256.27mm7655mm18/MRTE--
191.5VPOW--20GNDGND--
21B2B_B3_L9_NDIOT31921.36mm4246mm22B2B_B0_L2_PDIOC51012.17mm0314mm
23B2B_B3_L9_PDIOT41821.76mm2943mm24B2B_B0_L2_NDIOA5911.60mm8853mm
25B2B_B0_L3_PDIOD669.76mm0158mm26B2B_B0_L4_NDIOA6710.65mm8292mm
27B2B_B0_L3_NDIOC658.66mm4466mm28B2B_B0_L4_PDIOB6811.71mm2228mm
29GNDGND--30GNDGND--
31B2B_B3_L59_PDIOJ71114.90mm0801mm32B2B_B0_L5_NDIOA7811.59mm7078mm
33B2B_B3_L59_NDIOH81113.71mm8896mm34B2B_B0_L5_PDIOC7911.54mm9983mm
35B2B_B0_L32_PDIOD769.93mm1276mm36B2B_B0_L6_NDIOA8710.42mm6094mm
37B2B_B0_L32_NDIOD869.87mm1646mm38B2B_B0_L6_PDIOB8810.43mm9961mm
39GNDGND--40GNDGND--
41B2B_B0_L7_NDIOC869.62mm1167mm42B2B_B0_L8_NDIOA9912.28mm2657mm
43B2B_B0_L7_PDIOD969.71mm3073mm44B2B_B0_L8_PDIOC9912.92mm5699mm
45B2B_B0_L33_NDIOC1058.66mm889mm46B2B_B0_L34_NDIOA10711.58mm7216mm
47B2B_B0_L33_PDIOD1069.76mm1201mm48B2B_B0_L34_PDIOB10811.60mm6163mm
49GNDGND--50GNDGND--
51B2B_B0_L36_PDIOD1168.76mm6976mm52B2B_B0_L35_NDIOA11812.89mm4283mm
53B2B_B0_L36_NDIOC1258.87mm3601mm54B2B_B0_L35_PDIOC11912.92mm6535mm
55B2B_B0_L49_PDIOD1469.96mm136mm56B2B_B0_L37_NDIOA12710.52mm7513mm
57B2B_B0_L49_NDIOC1458.96mm7449mm58B2B_B0_L37_PDIOB12811.74mm0849mm
59GNDGND--60GNDGND--
61B2B_B0_L62_PDIOD1579.44mm687mm62B2B_B0_L38_NDIOA13812.38mm5431mm
63B2B_B0_L62_NDIOC1669.95mm5212mm64B2B_B0_L38_PDIOC13912.87mm8448mm
65B2B_B0_L66_PDIOE16810.07mm0885mm66B2B_B0_L50_NDIOA14711.66mm3259mm
67B2B_B0_L66_NDIOD1769.96mm9228mm68B2B_B0_L50_PDIOB14811.87mm4909mm
69GNDGND--70GNDGND--
71B2B_B1_L10_PDIOF16911.56mm3734mm72B2B_B0_L51_NDIOA151012.22mm0938mm
73B2B_B1_L10_NDIOF17811.85mm466mm74B2B_B0_L51_PDIOC151012.67mm5055mm
75B2B_B1_L9_PDIOG161012.59mm5086mm76B2B_B0_L63_NDIOA16711.95mm3551mm
77B2B_B1_L9_NDIOG171012.23mm6008mm78B2B_B0_L63_PDIOB16911.12mm772mm
79GNDGND--80GNDGND--
81B2B_B1_L21_NDIOJ161315.22mm7408mm82B2B_B0_L64_NDIOA17913.55mm5157mm
83B2B_B1_L21_PDIOK161415.41mm9404mm84B2B_B0_L64_PDIOC171013.25mm4806mm
85B2B_B1_L61_PDIOL171417.89mm852mm86B2B_B0_L65_NDIOA18812.51mm4997mm
87B2B_B1_L61_NDIOK181317.59mm4155mm88B2B_B0_L65_PDIOB18912.29mm3889mm
89GNDGND--90GNDGND--
91VCCAUXPOW--92B2B_B1_L20_PDIOA20811.02mm0846mm
93TMSJTAGC18-94B2B_B1_L20_NDIOA21710.82mm7172mm
95TDIJTAGE18-96B2B_B1_L19_PDIOB21912.63mm0803mm
97TDOJTAGA19-98B2B_B1_L19_NDIOB22911.06mm8608mm
99TCKJTAGG15-100B2B_B1_L59SIOP192730.19mm179mm

Signal Integrity Considerations

...

Traces of differential signals pairs are NOT routed with equal length, although difference in signal lines length is negligible for actual signal frequencies. For applications where traces length has to be matched or timing differences have to be compensated, Tables below abowe list the trace length of I/O signal lines measured from FPGA balls to B2B connector pins.

...

Signal
FPGA pin
BR3
R19
BR2
P18
BR1
N16
BR0
P17
Revision 011111
Revision 021110
Revision 031101

Board revisions pin coding

 

Revision 041100

Board revisions pin coding


Main Main differences between 01 and 02 revisions:

...

  • Optimized placement and routing for DC/DC converters
  • Added thermal vias to mounting holes
  • Added Testpoints
  • Changed Board revision identification to REV03
  • Changed U9 from SIT1602AI-83-33E-25.0000 to SiT8008AI-73-XXS-25.000000E
  • Added Track-it™ Traceability Pad
  • Change SPI Flash from W25Q128BVEIG to W25Q128FVEIG
  • DDR3 changed from IM4G16D3EABG-125I to IM4G16D3FABG-125I for the 4 GBit variants
  • U13 (DS2432P+) is no longer populated by default

...

Main differences between 03 and 04 revisions:

  • Optimized placement and routing
  • More powerful regulators
  • Removed stucked vias
  • Added Testpoints
  • Changed Board revision identification to REV04
  • U12 was fitted for all module assembly variants as default

Module assembly variants coded by 4 zero ohm resistors, connected to FPGA AV[3:0] pins. All these pins should be configured to have internal PULLUP.

full productionfull productionfull productionfull productionMF00C
Signal
FPGA pin
AV3
M18
AV2
M17
AV1
V20
AV0
U19
Speed
grade
SDRAMTemp
grade
Status
TE0600-02[V|B]000022x128MBitCobsolete
TE0600-02[V|B]I000122x128MBitIobsolete
TE0600-02[V|B]F001032x128MBitCobsolete
TE0600-02[V|B]IF001132x128MBitIobsolete
TE0600-02[V|B]MF010032x512MBitCobsolete
 TE0600-03[V|B]000022x128MBitCobsolete
TE0600-03[V|B]I000122x128MBitIobsolete
TE0600-03[V|B]F001032x128MBitCobsolete
TE0600-03[V|B]IF001132x128MBitIobsolete
TE0600-03[V|B]MF010032x512MBitCobsolete
TE0600-04-52I11000122x128MBitIfull production
TE0600-04-72C11000022x128MBitCfull production
TE0600-04-72C21010022x512MBitCfull production
TE0600-04-83C21011032x512MBitCfull production
TE0600-04-83I11001132x128MBitIfull production
TE0600-04-83I21011132x512MBitIfull production

Assembly variants pin coding

...

GigaBee XC6SLX has 4 mounting holes, one in each corner. The module can be fixed by screwing M3 screws (ISO 262) onto a carrier board through those mounting holes. 


Operating Temperature Ranges

...


 

 

Date

Revision

Contributors

Description

2011-10-010.01AIKRelease.
2011-10-050.02AIKAdded B2B pin-out section.
2011-10-060.03AIKReformatted pin-out tables. Added eFUSE programming section.
2011-10-060.04AIKAdded board photos. Additions to eFUSE section.
2011-10-060.05AIKRemoved net length information for nets which can't be measured right.
2011-10-060.06AIKAdded power consumption section.
2011-10-080.07AIKLittle fixes after FDR audit.
2011-10-120.08AIKFix in eFUSE section.
2011-11-110.09AIKAdded pin numbering description for B2B connectors
2012-01-200.10AIKAdded pin compatibility note and manual reference.
2012-04-120.11AIKAdded FPGA banks VCCIO voltages table.
2012-04-171.00FDRUpdated documentation link.
Replaced obsolete ElDesI and RedMine links with current GitHub links.
Updated dating convention.
2012-05-181.01AIKCorrected cross-reference in section 3.2. Corrected LED description.
2012-06-181.02FDRRemoved junction temperature limits under connector current ratings.
2012-07-181.03AIKAdded table with B2B signals summary per FPGA bank
2012-10-302.01AIKFork to 01 and 02 board revisions
2012-11-062.01AIKFixed bank 1 power options
2012-11-212.02AIKUpdated module diagram
2012-11-302.03AIKAdded Ethernet disable note
2012-12-192.04AIKFixed SPI Flash size on block diagram
2013-01-212.05AIKAdded PHY reset note
2013-03-132.06AIKConnectors current chapter moved to separate document
2013-03-132.07AIKChanged Bank 1 power supply description and VCCIO0 sources description
2016-01-29

2.08

AIK

Pause advertise correction
2016-11-05
3.00


FDR


Document ported to wiki and adapted to web presentation.
2017-04-03
TTAdded REV03 to assembly Variant Table
2024-03-11
4.00
MT

Added REV04 to assembly variant coding table
Added REV04 to revision coding table
Added main differences between 03 and 04 revisions
Updated nets lengths table
Added info about additional 3.3V single-ended oscillator (U12)
Updated supply diagram
Updated block diagram

2024-03-21
4.01
VY

Updated SoM statuses in Assembly variants pin coding Table 

Disclaimer

Include Page
IN:Legal Notices
IN:Legal Notices