Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

For detailed information about the pin-out, please refer to the Pin-out table.

Page break

MGT Lanes

The Xilinx Zynq UltraScale+ device used on the TE0820 module has 4 GTR transceivers. All 4 are wired directly to B2B connector JM3.

MGT (Multi Gigabit Transceiver) lane consists of one transmit and one receive (TX/RX) differential pairs, two signals each or , four signals total per one MGT lane. Following table lists lane number, MGT FPGA bank number, transceiver type, signal schematic name, board-to-board pin connection and FPGA pins connection:

LaneBankTypeSignal NameB2B PinFPGA Pin
0505GTR
  • B505_RX0_P
  • B505_RX0_N
  • B505_TX0_P
  • B505_TX0_N
  • JM3-26
  • JM3-28
  • JM3-25
  • JM3-27
  • PS_MGTRRXP0_505, F27
  • PS_MGTRRXN0_505, F28
  • PS_MGTRTXP0_505, E25
  • PS_MGTRTXN0_505, E26
1505GTR
  • B505_RX1_P
  • B505_RX1_N
  • B505_TX1_P
  • B505_TX1_N
  • JM3-20
  • JM3-22
  • JM3-19
  • JM3-21
  • PS_MGTRRXP1_505, D27
  • PS_MGTRRXN1_505, D28
  • PS_MGTRTXP1_505, D23
  • PS_MGTRTXN1_505, D24
2505GTR
  • B505_RX2_P
  • B505_RX2_N
  • B505_TX2_P
  • B505_TX2_N
  • JM3-14
  • JM3-16
  • JM3-13
  • JM3-15
  • PS_MGTRRXP0_505, B27
  • PS_MGTRRXN0_505, B28
  • PS_MGTRTXP0_505, C25
  • PS_MGTRTXN0_505, C26
3505GTR
  • B505_RX3_P
  • B505_RX3_N
  • B505_TX3_P
  • B505_TX3_N
  • JM3-8
  • JM3-10
  • JM3-7
  • JM3-9
  • PS_MGTRRXP1_505, A25
  • PS_MGTRRXN1_505, A26
  • PS_MGTRTXP1_505, B23
  • PS_MGTRTXN1_505, B24

Table 4: MGT lanes.

 

Below There are listed MGT reference 3 clock sources .for the GTR transceivers. B505_CLK0 is connected directly to B2B connector JM3, so the clock can be provided by the carrier board. Other two clocks B505_CLK1 and B505_CLK3 are provided by the on-board clock generator (U10). As there are no capacitive coupling of the data and clock lines that are connected to the connectors, these may be required on the user’s PCB depending on the application.

Clock signalBankSourceFPGA PinNotes
B505_CLK0_P
Clock signalBankSourceFPGA PinNotes
B505_CLK0_P505B2B, JM3-31PS_MGTREFCLK0P_505, F23Supplied by the carrier board.
B505_CLK0_N505B2B, JM3-3331PS_MGTREFCLK0NMGTREFCLK0P_505, F24F23Supplied by the carrier board.
B505_CLK1CLK0_PN505B2B, JM3-33PS_MGTREFCLK0N_505, F24Supplied by the carrier board.
B505_CLK1_P505U10, U10, CLK2APS_MGTREFCLK1P_505, E21On-board Si5338A.
B505_CLK1_N505U10, CLK2BPS_MGTREFCLK1N_505, E22On-board Si5338A.
B505_CLK2_P505N/APS_MGTREFCLK2P_505, C21Not connected.
B505_CLK2_N505N/APS_MGTREFCLK2N_505, C22Not connected.
B505_CLK3_P505U10, CLK1APS_MGTREFCLK3P_505, A21On-board Si5338A.
B505_CLK3_N505U10, CLK1BPS_MGTREFCLK3N_505, A22On-board Si5338A.

...

Two quad SPI compatible serial bus flash N25Q256A memory chips are provided for FPGA configuration file storage. After configuration completes the remaining free memory can be used for application data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths to be used. The maximum data transfer rate depends on the bus width and clock frequency.

Programmable Clock Generator

There is a Silicon Labs I2C programmable clock generator Si5338A (U10) chip on the module. It's output frequencies can be programmed using the I2C bus address 0x70 or 0x71. Default address is 0x70, IN4/I2C_LSB pin must be set to high for address 0x71.

A 25.000000 MHz oscillator is connected to the pin IN3 and is used to generate the output clocks. The oscillator has its output enable pin permanently connected to 1.8V power rail, thus making output frequency available as soon as 1.8V is present. Three of the Si5338 clock outputs are connected to the FPGA. One is connected to a logic bank and the other two are connected to the GTR banks. It is possible to use the clocks connected to the GTR bank in the user's logic design. This is achieved by instantiating a IBUFDSGTE buffer in the design.

Once running, the frequency and other parameters can be changed by programming the device using the I2C bus connected between the FPGA (master) and clock generator (slave). For this, proper I2C bus logic has to be implemented in FPGA.

...

Not used (external clock signal supply).

...

IN3

...

25.000000 MHz

...

Fixed input clock signal from reference clock generator SiT8008BI-73-18S-25.000000E (U11).

...

IN5

...

-

...

Not connected.

...

IN6

...

-

...

-

...

Bank 65 clock input, pins K9 and J9.

...

CLK1 A/B

...

MGT reference clock 3 to FPGA Bank 505 MGT.

...

CLK2 A/B

...

-

...

MGT reference clock 1 to FPGA Bank 505 MGT.

...

Gigabit Ethernet PHY

On-board Gigabit Ethernet PHY (U8) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII interface is connected to the ZynqMP Ethernet3 PS GEM3. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U21).

High-speed USB ULPI PHY

Hi-speed USB ULPI PHY (U32) is provided with USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0 via MIO28..39, bank 501 (see also section). The I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U33).

MAC Address EEPROM

A Microchip 24AA025E48 serial EEPROM (U25) contains a globally unique 48-bit node address, which is compatible with EUI-48(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. It is accessible over I2C bus with slave device address 0x53.

Programmable Clock Generator

There is a Silicon Labs I2C programmable clock generator Si5338A (U10) chip on the module. It's output frequencies can be programmed using the I2C bus address 0x70 or 0x71. Default address is 0x70, IN4/I2C_LSB pin must be set to high for address 0x71.

A 25.000000 MHz oscillator is connected to the pin IN3 and is used to generate the output clocks. The oscillator has its output enable pin permanently connected to 1.8V power rail, thus making output frequency available as soon as 1.8V is present. Three of the Si5338 clock outputs are connected to the FPGA. One is connected to a logic bank and the other two are connected to the GTR banks. It is possible to use the clocks connected to the GTR bank in the user's logic design. This is achieved by instantiating a IBUFDSGTE buffer in the design.

Once running, the frequency and other parameters can be changed by programming the device using the I2C bus connected between the FPGA (master) and clock generator (slave). For this, proper I2C bus logic has to be implemented in FPGA.

SignalFrequencyNotes
IN1/IN2-

Not used (external clock signal supply).

IN3

25.000000 MHz

Fixed input clock signal from reference clock generator SiT8008BI-73-18S-25.000000E (U11).

IN4-LSB of the default I2C address, wired to ground mean address is 0x70.

IN5

-

Not connected.

IN6

-

Wired to ground.
CLK0 A/B

-

Bank 65 clock input, pins K9 and J9.

CLK1 A/B

-

MGT reference clock 3 to FPGA Bank 505 MGT.

CLK2 A/B

-

MGT reference clock 1 to FPGA Bank 505 MGT.

CLK3 A/B-Not connected.

Table 12: General overview of the on-board quad clock generator I/O signals.

Oscillators

The module has following reference clock signals provided by on-board oscillators and external source from carrier board:

Clock SourceSchematic NameFrequencyClock Destination
SiTime SiT8008BI oscillator, U21PS_CLK33.333333 MHzZynq MPSoC U1,pin R16
SiTime SiT8008BI oscillator, U21-25.000000 MHzQuad PLL clock generator U10, pin 3, and Ethernet  PHY U8, pin 34

Table 13: Reference clock signals

Table 12: General overview of the on-board quad clock generator I/O signals.

Oscillators

The module has following reference clock signals provided by on-board oscillators and external source from carrier board:

...

Table 13: Reference clock signals.

Gigabit Ethernet PHY

On-board Gigabit Ethernet PHY (U8) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII interface is connected to the ZynqMP Ethernet3 PS GEM3. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U21).

High-speed USB ULPI PHY

Hi-speed USB ULPI PHY (U32) is provided with USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0 via MIO28..39, bank 501 (see also section). The I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U33).

MAC Address EEPROM

A Microchip 24AA025E48 serial EEPROM (U25) contains a globally unique 48-bit node address, which is compatible with EUI-48(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. It is accessible over I2C bus with slave device address 0x53.

GTR Transceivers

The Xilinx Zynq UltraScale+ device used on the TE0820 module has 4 GTR transceivers. All 4 are wired directly to B2B connector JM3. There are also 3 clock sources for the transceivers. B505_CLK0 is connected directly to B2B connector JM3, so the clock can be provided by the carrier board. Other two clocks B505_CLK1 and B505_CLK3 are provided by the on-board clock generator (U10). As there are no capacitive coupling of the data and clock lines that are connected to the connectors, these may be required on the user’s PCB depending on the application.

On-board LEDs

There is one on-board red LED D1 wired to the PS DONE signal.

...