Xilinx IBERT with TE0808 Starterkit (TEBF0808 Carrier).
Refer to http://trenz.org/te0808-info for the current online version of this manual and other available documentation.
Date | Vivado | Project Built | Authors | Description |
---|---|---|---|---|
2020-09-29 | 2019.2 | TE0808-test_board-vivado_2019.2-build_15_20200929070725.zip TE0808-test_board_noprebuilt-vivado_2019.2-build_15_20200929070740.zip | John Hartfiel |
|
2020-03-25 | 2019.2 | ??? | John Hartfiel |
|
Issues | Description | Workaround/Solution | To be fixed version |
---|---|---|---|
-- | -- | -- | -- |
Software | Version | Note |
---|---|---|
Vitis | 2019.2 | needed, Vivado is included into Vitis installation |
PetaLinux | 2019.2 | needed |
SI ClockBuilder Pro | --- | optional |
Basic description of TE Board Part Files is available on TE Board Part Files.
Complete List is available on <design name>/board_files/*_board_files.csv
Design supports following modules:
Module Model | Board Part Short Name | PCB Revision Support | DDR | QSPI Flash | EMMC | Others | Notes |
---|---|---|---|---|---|---|---|
es1_2gb | REV03|REV02 | 2GB | 64MB | NA | NA | Not longer supported by vivado | |
es2_2gb | REV04|REV03 | 2GB | 64MB | NA | NA | Not longer supported by vivado | |
2es2_2gb | REV04|REV03 | 2GB | 64MB | NA | NA | Not longer supported by vivado | |
TE0808-04-09EG-1EA | 9eg_1e_2gb | REV04 | 2GB | 64MB | NA | NA | |
TE0808-04-09EG-1EB | 9eg_1e_4gb | REV04 | 4GB | 64MB | NA | NA | |
TE0808-04-09EG-1ED | 9eg_1e_4gb | REV04 | 4GB | 64MB | NA | 1 mm connectors | |
TE0808-04-09EG-2IB | 9eg_2i_4gb | REV04 | 4GB | 64MB | NA | NA | |
TE0808-04-15EG-1EB | 15eg_1e_4gb | REV04 | 4GB | 64MB | NA | NA | |
TE0808-04-09EG-1EE | 9eg_1e_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-09EG-1EL | 9eg_1e_4gb | REV04 | 4GB | 128MB | NA | 1 mm connectors | |
TE0808-04-09EG-2IE | 9eg_2i_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-15EG-1EE | 15eg_1e_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-06EG-1EE | 6eg_1e_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-06EG-1E3 | 6eg_1e_4gb | REV04 | 4GB | 128MB | NA | 1 mm connectors | |
TE0808-04-6GI21-L | 6eg_2i_4gb | REV04 | 4GB | 128MB | NA | 1 mm connectors | |
TE0808-04-6GI21-A | 6eg_2i_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-6BI21-A | 6eg_1i_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-9GI21-A | 9eg_2i_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-9BE21-A | 9eg_1e_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-6BE21-L | 6eg_1e_4gb | REV04 | 4GB | 128MB | NA | 1 mm connectors | |
TE0808-04-6BE21-A | 6eg_1e_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-9BE21-L | 9eg_1e_4gb | REV04 | 4GB | 128MB | NA | 1 mm connectors | |
TE0808-04-BBE21-A | 15eg_1e_4gb | REV04 | 4GB | 128MB | NA | NA | |
TE0808-04-6BI21-X | 6eg_1i_4gb | REV04 | 4GB | 128MB | NA | NA | U41 replaced with schottky diodes |
TE0808-05-6BE21-A | 6eg_1e_4gb | REV05 | 4GB | 128MB | NA | NA | NA |
TE0808-05-6BI21-D | 6eg_1i_4gb | REV05 | 4GB | 128MB | NA | 1 mm connectors | SoC without encryption |
TE0808-05-6BI21-X | 6eg_1i_4gb | REV05 | 4GB | 128MB | NA | NA | U41 replaced with schottky diodes |
TE0808-05-6BI41-X | 6eg_1i_8gb | REV05 | 8GB | 128MB | NA | NA | U41 replaced with schottky diodes |
TE0808-05-9BE21-A | 9eg_1e_4gb | REV05 | 4GB | 128MB | NA | NA | NA |
TE0808-05-9BE21-L | 9eg_1e_4gb | REV05 | 4GB | 128MB | NA | 1 mm connectors | NA |
TE0808-05-9BI41-X | 9eg_1i_8gb | REV05 | 8GB | 128MB | NA | NA | U41 replaced with schottky diodes |
TE0808-05-9GI21-A | 9eg_2i_4gb | REV05 | 4GB | 128MB | NA | NA | NA |
TE0808-05-9GI21-C | 9eg_2i_4gb | REV05 | 4GB | 128MB | NA | NA | SoC without encryption |
TE0808-05-BBE21-A | 15eg_1e_4gb | REV05 | 4GB | 128MB | NA | NA | NA |
TE0808-05-BBE21-L | 15eg_1e_4gb | REV05 | 4GB | 128MB | NA | 1 mm connectors | NA |
Note: Design contains also Board Part Files for TE0808 only configuration, this boart part files are not used for this reference design.
Design supports following carriers:
Carrier Model | Notes |
---|---|
TEBF0808 | Used as reference carrier. Important: CPLD Firmware REV07 or newer is recommended |
Additional HW Requirements:
Additional Hardware | Notes |
---|---|
Heat Sink for the SoC | Important! |
FMC Loopback Karte | Optional HW |
SFP+ Loopback Adapter | |
Firefly cable | loopback possible with second connector on the carrier |
PCIe Card | Optional HW |
SD card | with fat32 partiton |
For general structure and of the reference design, see Project Delivery - AMD devices
Type | Location | Notes |
---|---|---|
Vivado | <design name>/block_design <design name>/constraints <design name>/ip_lib <design name>/hdl | Vivado Project will be generated by TE Scripts |
Vitis | <design name>/sw_lib | Additional Software Template for Vitis and apps_list.csv with settings automatically for Vitis app generation |
PetaLinux | <design name>/os/petalinux | PetaLinux template with current configuration |
Type | Location | Notes |
---|---|---|
SI5345 | <design name>/misc/Si5345 | SI5345 Project with current PLL Configuration |
File | File-Extension | Description |
---|---|---|
BIF-File | *.bif | File with description to generate Bin-File |
BIN-File | *.bin | Flash Configuration File with Boot-Image (Zynq-FPGAs) |
BIT-File | *.bit | FPGA (PL Part) Configuration File |
DebugProbes-File | *.ltx | Definition File for Vivado/Vivado Labtools Debugging Interface |
Diverse Reports | --- | Report files in different formats |
Hardware-Platform-Specification-Files | *.xsa | Exported Vivado Hardware Specification for Vitis and PetaLinux |
LabTools Project-File | *.lpr | Vivado Labtools Project File |
Software-Application-File | *.elf | Software Application for Zynq or MicroBlaze Processor Systems |
Reference Design is only usable with the specified Vivado/SDK/PetaLinux/SDx version. Do never use different Versions of Xilinx Software for the same Project.
Reference Design is available on:
Reference Design is available with and without prebuilt files. It's recommended to use TE prebuilt files for first lunch.
Trenz Electronic provides a tcl based built environment based on Xilinx Design Flow.
See also:
The Trenz Electronic FPGA Reference Designs are TCL-script based project. Command files for execution will be generated with "_create_win_setup.cmd" on Windows OS and "_create_linux_setup.sh" on Linux OS.
TE Scripts are only needed to generate the vivado project, all other additional steps are optional and can also executed by Xilinx Vivado/SDK GUI. For currently Scripts limitations on Win and Linux OS see: Project Delivery Currently limitations of functionality
For basic board setup, LEDs... see: TEBF0808 Getting Started
Check Module and Carrier TRMs for proper HW configuration before you try any design.
Xilinx documentation for programming and debugging: Vivado/SDK/SDSoC-Xilinx Software Programming and Debugging
Optional for Boot.bin on QSPI Flash and image.ub on SD.
Not used on this Example.
Open Vivado HW-Manager and add VIO signal to dashboard (*.ltx located on prebuilt folder).
TODO picture
TODO mapping table
*Note: IBERT is used as RTL IP, TOP entity is modified version from Xilinx eIBERT example export
Activated interfaces:
Type | Note |
---|---|
DDR | |
QSPI | MIO |
SD1 | MIO |
I2C0 | MIO |
UART0 | MIO |
GPIO0 | MIO |
SWDT0..1 | |
TTC0..3 |
set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design] set_property BITSTREAM.CONFIG.UNUSEDPIN PULLNONE [current_design]
# file: ibert_ultrascale_gth_0.xdc #################################################################################### ## ____ ____ ## / /\/ / ## /___/ \ / Vendor: Xilinx ## \ \ \/ Version : 2017.1 ## \ \ Application : IBERT Ultrascale ## / / Filename : example_ip_ibert_ultrascale_gth_0.xdc ## /___/ /\ ## \ \ / \ ## \___\/\___\ ## ## ## ## Generated by Xilinx IBERT ##************************************************************************** ## ## TX/RX out clock clock constraints ## # GT X0Y4 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[0].u_q/CH[0].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[0].u_q/CH[0].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y5 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[0].u_q/CH[1].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[0].u_q/CH[1].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y6 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[0].u_q/CH[2].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[0].u_q/CH[2].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y7 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[0].u_q/CH[3].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[0].u_q/CH[3].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y4 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[1].u_q/CH[0].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[1].u_q/CH[0].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y5 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[1].u_q/CH[1].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[1].u_q/CH[1].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y6 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[1].u_q/CH[2].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[1].u_q/CH[2].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y7 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[1].u_q/CH[3].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[1].u_q/CH[3].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y8 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[2].u_q/CH[0].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[2].u_q/CH[0].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y9 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[2].u_q/CH[1].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[2].u_q/CH[1].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y10 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[2].u_q/CH[2].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[2].u_q/CH[2].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y11 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[2].u_q/CH[3].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[2].u_q/CH[3].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y12 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[3].u_q/CH[0].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[3].u_q/CH[0].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y13 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[3].u_q/CH[1].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[3].u_q/CH[1].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y14 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[3].u_q/CH[2].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[3].u_q/CH[2].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks] # GT X0Y15 set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[3].u_q/CH[3].u_ch/u_gthe4_channel/RXOUTCLK}] -include_generated_clocks] set_clock_groups -asynchronous -group [get_clocks -of_objects [get_pins {u_ibert_gth_core/inst/QUAD[3].u_q/CH[3].u_ch/u_gthe4_channel/TXOUTCLK}] -include_generated_clocks]
# file: ibert_ultrascale_gth_0.xdc #################################################################################### ## ____ ____ ## / /\/ / ## /___/ \ / Vendor: Xilinx ## \ \ \/ Version : 2012.3 ## \ \ Application : IBERT Ultrascale ## / / Filename : example_ibert_ultrascale_gth_0.xdc ## /___/ /\ ## \ \ / \ ## \___\/\___\ ## ## ## ## Generated by Xilinx IBERT 7Series ##************************************************************************** ## ## Icon Constraints ## create_clock -name D_CLK -period 10.0 [get_ports gth_sysclkp_i] set_clock_groups -group [get_clocks D_CLK -include_generated_clocks] -asynchronous set_property C_CLK_INPUT_FREQ_HZ 100000000 [get_debug_cores dbg_hub] set_property C_ENABLE_CLK_DIVIDER true [get_debug_cores dbg_hub] ##gth_refclk lock constraints ## set_property PACKAGE_PIN F25 [get_ports gth_refclk0p_i[0]] set_property PACKAGE_PIN F26 [get_ports gth_refclk0n_i[0]] set_property PACKAGE_PIN D25 [get_ports gth_refclk1p_i[0]] set_property PACKAGE_PIN D26 [get_ports gth_refclk1n_i[0]] set_property PACKAGE_PIN R8 [get_ports gth_refclk0p_i[1]] set_property PACKAGE_PIN R7 [get_ports gth_refclk0n_i[1]] set_property PACKAGE_PIN N8 [get_ports gth_refclk1p_i[1]] set_property PACKAGE_PIN N7 [get_ports gth_refclk1n_i[1]] set_property PACKAGE_PIN L8 [get_ports gth_refclk0p_i[2]] set_property PACKAGE_PIN L7 [get_ports gth_refclk0n_i[2]] set_property PACKAGE_PIN J8 [get_ports gth_refclk1p_i[2]] set_property PACKAGE_PIN J7 [get_ports gth_refclk1n_i[2]] set_property PACKAGE_PIN G8 [get_ports gth_refclk0p_i[3]] set_property PACKAGE_PIN G7 [get_ports gth_refclk0n_i[3]] set_property PACKAGE_PIN E8 [get_ports gth_refclk1p_i[3]] set_property PACKAGE_PIN E7 [get_ports gth_refclk1n_i[3]] ## ## Refclk constraints ## create_clock -name gth_refclk0_1 -period 8.0 [get_ports gth_refclk0p_i[0]] create_clock -name gth_refclk1_1 -period 8.0 [get_ports gth_refclk1p_i[0]] set_clock_groups -group [get_clocks gth_refclk0_1 -include_generated_clocks] -asynchronous set_clock_groups -group [get_clocks gth_refclk1_1 -include_generated_clocks] -asynchronous create_clock -name gth_refclk0_3 -period 8.0 [get_ports gth_refclk0p_i[1]] create_clock -name gth_refclk1_3 -period 8.0 [get_ports gth_refclk1p_i[1]] set_clock_groups -group [get_clocks gth_refclk0_3 -include_generated_clocks] -asynchronous set_clock_groups -group [get_clocks gth_refclk1_3 -include_generated_clocks] -asynchronous create_clock -name gth_refclk0_4 -period 8.0 [get_ports gth_refclk0p_i[2]] create_clock -name gth_refclk1_4 -period 8.0 [get_ports gth_refclk1p_i[2]] set_clock_groups -group [get_clocks gth_refclk0_4 -include_generated_clocks] -asynchronous set_clock_groups -group [get_clocks gth_refclk1_4 -include_generated_clocks] -asynchronous create_clock -name gth_refclk0_5 -period 8.0 [get_ports gth_refclk0p_i[3]] create_clock -name gth_refclk1_5 -period 8.0 [get_ports gth_refclk1p_i[3]] set_clock_groups -group [get_clocks gth_refclk0_5 -include_generated_clocks] -asynchronous set_clock_groups -group [get_clocks gth_refclk1_5 -include_generated_clocks] -asynchronous ## ## System clock pin locs and timing constraints ## #set_property PACKAGE_PIN AH7 [get_ports gth_sysclkp_i] #set_property IOSTANDARD DIFF_SSTL15 [get_ports gth_sysclkp_i]
For SDK project creation, follow instructions from:
SDK template in ./sw_lib/sw_apps/ available.
TE modified 2019.2 FSBL
General:
Module Specific:
TE modified 2019.2 FSBL
General:
Hello TE0808 IBERTis a Xilinx Hello World example as endless loop instead of one console output.
File location <design name>/misc/Si5345/Si5345-*.slabtimeproj
General documentation how you work with these project will be available on Si5345
To get content of older revision got to "Change History" of this page and select older document revision number.
Date | Document Revision | Authors | Description |
---|---|---|---|
| |||
2020-03-25 | v.1 | John Hartfiel |
|
All |
Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy
The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.
In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.
The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.
To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.
REACH
Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).
RoHS
Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.
WEEE
Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).
Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.
Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.