Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • Xilinx Zynq XC7Z010-1CLG400I or XC7Z020-1CLG400I
    • Dual-core ARM Cortex-A9 MPCore
    • Max. 667 MHz
  • Shock proof an and vibration resistant
  • Size 6 x 4 cm
  • Plug-On-Modul with 1 × 160 Pin High-Speed connector
  • 1 GByte DDR3L SDRAM
  • 32 MByte QSPI Flash Speicher
  • 1 x GBit Ethernet PHY
  • 1 x MAC-Address EEPROM
  • 128 KBit EEPROM
  • 1 x CAN Transceiver
  • On-Board DC/DC-regulators
  • Excellent signal integrity due to well dirstributed supply pins

...

Page properties
hiddentrue

draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramNameBD-TE0724
simpleViewertrue
width
linksauto
tbstyletop
lboxtrue
diagramWidth641
revision910

Main Components

Page properties
hiddentrue

draw.io Diagram
bordertrue
viewerToolbartrue
fitWindowfalse
diagramNameTE0724-02_Top
simpleViewerfalse
width
diagramWidth641
draw.io Diagram
bordertrue
viewerToolbartrue
fitWindowfalse
diagramNameTE0724-02_Bottom
simpleViewerfalse
width
diagramWidth641

...

Boot mode is selected via two pins at B2B connector J2. By default the TE0724 supports JTAG and SPI Boot Mode. Connecting a SD Card via B2B connector to MIO Pins 40 to 45 or MIO 46 to 51 (See SD Card Interface) gives the possibility to boot from SD Card.

...

Table 3: General overview of PL I/O signals connected to the B2B connectors.


All PS MIO banks as well as PL bank 34 are powered by on-module DC-DC power rails. Valid VCCO_35 for PL bank 35 should be supplied from the carrier board.

...

JTAG Interface

JTAG access to the ZYNQ SoC is provided through B2B connector J1 and testpoints.

...

Special purpose pins are available for System Controller functions and have are routed to the Power Management IC (U4) with the following default configuration:

Signal NameModeFunctionB2B Connector PinConfiguration
RESETREQINPUTReset requestJ1-150Aktive LOW, enter reset mode when set low. Pulled up to VIN.
ONKEYINPUTPower-on keyJ1-148Debounced edge sensitve power mode manipulator. On/Off with optional long press shutdown, function dependent on register value of NONKEY_PIN, KEY_DELAY.
PWR_TPIN/OUTTest pinJ1-146

Enables Power Commander boot mode and supply pin for OTP fusing voltage.

PWR_GPIO2IN/OUT
J1-143
PWR_GPIO2IN/OUT
J1-141
PGOODOutputPower GoodJ1-148Active high when all on-module power supplies are working properly.
JTAGENInputJTAG SelectJ2-131Low for normal operation.

Table 5: System Controller CPLD I/O pins.


Table 5: System Controller CPLD I/O pins.


HTML
<!--
HTML
<!--
For the detailed function of the pins and signals, the internal signal assignment and implemented logic, look to the Wiki reference page SC CPLD of this module or into the bitstream file of the SC CPLD.
Add link to the Wiki reference page of the SC CPLD, if available.
   -->

Quad SPI Interface

Following line is just an example, change it to your needs.

Quad SPI Flash (U14U13) is connected to the Zynq PS QSPI0 QSPI_0 interface via PS MIO bank 500, pins MIO1 ... MIO6.

Note that table column says "Signal Name", it should match the name used on the schematic.

MIOSignal NameMIOSignal NameU14 Pin
1SPI-_CSC2
2SPI-_DQ0/M0MIO2D3
3SPI-_DQ1/M1MIO3D2
4SPI-_DQ2/M2MIO4C4
5SPI-_DQ3/M3MIO5D4
6SPI-_SCK/M4MIO6B2

Table x6: Quad SPI interface signals and connections.

SD Card Interface

Describe There is no physical SD Card interface  shortly here if slot on the module has one...

...

Table x: SD Card interface signals and connections.

Ethernet Interface

On board Gigabit Ethernet PHY is provided with ...

Ethernet PHY connection

...

Table x: ...

USB Interface

USB PHY is provided with ...

...

Table x: ...

The schematic for the USB connector and required components is different depending on the USB usage. USB standard A or B connectors can be used for Host or Device modes. A Mini USB connector can be used for USB Device mode. A USB Micro connector can be used for Device mode, OTG Mode or Host Mode.

I2C Interface

On-board I2C devices are connected to MIO.. and MIO.. which are configured as I2C... by default. I2C addresses for on-board devices are listed in the table below:

...

Table x: I2C slave device addresses.

On-board Peripherals

HTML
<!--
Components on the Module, like Flash, PLL, PHY...
  -->

System Controller CPLD

The System Controller CPLD (U2) is provided by Lattice Semiconductor LCMXO2-256HC (MachXO2 Product Family). The  SC-CPLD is the central system management unit where essential control signals are logically linked by the implemented logic in CPLD firmware, which generates output signals to control the system, the on-board peripherals and the interfaces. Interfaces like JTAG and I2C between the on-board peripherals and to the FPGA module are by-passed, forwarded and controlled by the System Controller CPLD.

Other tasks of the System Controller CPLD are the monitoring of the power-on sequence and to display the programming state of the FPGA module.

For detailed information, refer to the reference page of the SC CPLD firmware of this module.

HTML
<!--
Put in link to the Wiki reference page of the firmware of the SC CPLD.
  -->

DDR Memory

By default TE0xxx module has ... DDRx SDRAM chips arranged into 32-bit wide memory bus providing total of 1 GBytes of on-board RAM. Different memory sizes are available optionally.

Quad SPI Flash Memory

On-board QSPI flash memory (U14) on the TE0745-02 is provided by Micron Serial NOR Flash Memory N25Q256A with 256 Mbit (32 MByte) storage capacity. This non volatile memory is used to store initial FPGA configuration. Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency used.

Note

SPI Flash QE (Quad Enable) bit must be set to high or FPGA is unable to load its configuration from flash during power-on. By default this bit is set to high at the manufacturing plant.

Gigabit Ethernet PHY

On-board Gigabit Ethernet PHY (U7) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U9), the 125MHz output clock signal CLK_125MHZ is connected to the pin J2-150 of B2B connector J2.

High-speed USB ULPI PHY

...

. Three different interface options are possible at a carrier via the PS MIO 10 to 15 or 40 to 45 or 46 to 51 plus additional MIOs for SD Card Detect and Write Protect as well as SD Card Power Controls. For details compare Xilinx UG585-Zynq-7000-TRM Table 2-4.

Ethernet Interface PHY


The TE0724 is equipped with a Marvell Alaska 88E1512 Gigabit Ethernet PHY (U7) connected to PS Ethernet GEM0. The I/O Voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U9), the 125MHz output clock signal CLK_125MHZ is connected to the PL IO_L11P_T1_SRCC_34.

PHY PinPS bank 501B2BNotes
MDC/MDIOMIO52/MIO53-
LED0-J1-10
LED1-J1-12
LED2/Interrupt--not connected
CONFIG--connected to 1.8V (VDDO), PHY Address = 1
RESETnMIO39-
RGMIIMIO16..MIO27-
SGMII--not connected
MDI-J1-7,9,13,15,19,21,25,27

Table 7: Ethernet PHY connections.

CAN PHY

A felxible data rate CAN Transceiver is provided by a Microchip MCP2542FDT.


PHY PinPL bank 34B2BNotes
TX/RXIO_L1P/IO_L1N-
CAN_L / CAN_H-J1-1 / J1-3

I2C Interface

On-board I2C devices are connected to PS MIO28 (SCL) and MIO29 (SDA). I2C addresses for on-board devices are listed in the table below:

I2C DeviceI2C AddressNotes
MAC EEPROM, U2310100111.8V
USER EEPROM, U1010100001.8V
Power Management U4
3.3V
J1
J1-142 SDA, J1-144 SDL at 3.3V

Table x: I2C slave device addresses.

On-board Peripherals

HTML
<!--
Components on the Module, like Flash, PLL, PHY...
  -->

System Controller CPLD

The System Controller CPLD (U2) is provided by Lattice Semiconductor LCMXO2-256HC (MachXO2 Product Family). The  SC-CPLD is the central system management unit where essential control signals are logically linked by the implemented logic in CPLD firmware, which generates output signals to control the system, the on-board peripherals and the interfaces. Interfaces like JTAG and I2C between the on-board peripherals and to the FPGA module are by-passed, forwarded and controlled by the System Controller CPLD.

Other tasks of the System Controller CPLD are the monitoring of the power-on sequence and to display the programming state of the FPGA module.

For detailed information, refer to the reference page of the SC CPLD firmware of this module.

HTML
<!--
Put in link to the Wiki reference page of the firmware of the SC CPLD.
  -->

DDR Memory

By default TE0724 module has 2 DDR3L SDRAM chips arranged into 32-bit wide memory bus providing total of 1 GBytes of on-board RAM. Different memory sizes are available optionally.

Quad SPI Flash Memory

On-board QSPI flash memory (U13) on the TE0724-02 is a SPANSION S25FL256S with 256 Mbit (32 MByte) storage capacity. This non volatile memory is used to store initial FPGA configuration. Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency used.

Note

SPI Flash QE (Quad Enable) bit must be set to high or FPGA is unable to load its configuration from flash during power-on. By default this bit is set to high at the manufacturing plant.

MAC Address EEPROM

A Microchip 24AA025E48 serial EEPROM (U23) contains a globally unique 48-bit node address, which is compatible with EUI-48(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. It is accessible over I2C bus with slave device address 0x53.

RTC - Real Time Clock

An temperature compensated Intersil ISL...

Programmable Clock Generator

There is a Silicon Labs I2C programmable quad PLL clock generator on-board (Si5338A, U2) to generate various reference clocks for the module.

...

IN1

...

-

...

Not used.

...

IN3

...

Reference input clock.

...

IN4

...

IN5

...

-

...

CLK0A

...

CLK1_P

...

FPGA bank 45.

...

CLK0_P

...

FPGA bank 45.

...

address and is write protected, the other block is available for application use. It is accessible over I2C bus with slave device address 0x53.

USER EEPROM

A Microchip 24AA128T serial EEPROM (U10) is availabe for e.g. module idetification and user Data. The device has 128Kbit memory with max 64 bytes page write capability. It is accessible over I2C bus with slave device address 0x50 Table : Programmable quad PLL clock generator inputs and outputs.

Oscillators

The module has following reference clock signals provided by on-board oscillators and external source from carrier board:

Clock SourceSchematic NameSignalFrequencyClock Destination
........
SiTime SiT8008BI oscillator, U9ETH_XTAL25.000000 MHzXTAL_IN,  U7 ETH PHY
SiTime SiT8008AI oscillator, U6PS_CLK33.333333 MHzPS_CLK_500, Bank 500SiTime SiT8008BI oscillator, U21-25.000000 MHzQuad PLL clock generator U16, pin 3.

Table : Reference clock signals.

...

LED ColorConnected toDescription and Notes
D1GreenPS MIO7User LED......
D2GreenPL IO_L3P_T0_34User LED.
D3RedPL IO_L4N_T0_34User LED..

Table : On-board LEDs.

Power and Power-On Sequence

...