Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Scroll Only (inline)
Refer to http://trenz.org/tef1001-info for the current online version of this manual and other available documentation.

Key Features

List key features here, like FPGA type, amount and type of RAM, type of flash, etc.

Additional assembly options are available for cost or performance optimization upon request.

Block Diagram

  • Xilinx Zynq-7000 XC7Z035, XC7Z045 or XC7Z100 SoC
  • Rugged for shock and high vibration
  • Large number of configurable I/Os are provided via rugged high-speed stacking strips
  • Dual ARM Cortex-A9 MPCore
    • 1 GByte RAM (32-Bit wide DDR3)
    • 32 MByte QSPI Flash memory
    • 2 x Hi-Speed USB2 ULPI transceiver PHY
    • 2 x Gigabit (10/100/1000 Mbps) Ethernet transceiver PHY
    • 4 GByte eMMC (optional up to 64 GByte)
  • 2 x MAC-address EEPROMs
  • Optional 2x 64 MByte HyperFLASH or 2x 8 MByte HyperRAM (max 2x 32 MByte HyperRAM)
  • Temperature compensated RTC (real-time clock)
  • Si5338A programmable quad PLL clock generator for GTX transceiver clocks
  • Plug-on module with 3 x 160-pin high-speed strips
    • 16 GTX high-performance transceiver
    • 2x GT transceiver clock inputs
    • 254 FPGA I/O's (125 LVDS pairs)
  • On-board high-efficiency switch-mode DC-DC converters
  • System management
  • eFUSE bit-stream encryption
  • AES bit-stream encryption
  • Evenly-spread supply pins for good signal integrity
  • User LED


Additional assembly options are available for cost or performance optimization upon request.


Block Diagram

HTML
<!--
Rules for all diagrams:
1. All diagrams are wrapped
HTML
<!--
Rules for all diagrams:
1. All diagrams are wrapped in the "Scroll Title" macro.
	- The title has to be named with the diagrams name
	- The anchor has the designation figure_x, whereby x is the number of the diagram

2. The Draw.IO diagram has to be inserted in the "Scroll Ignore" macro
	- Border has to be switched off in the macro edit
	- Toolbar has to be hidden in the macro edit

3. A PNG Export of the diagram has to be inserted in the "Scroll OnlyTitle" macro, see Wiki page "Diagram Drawing Guidelines" how to do this step.

The workaround with the additional PNG of the diagram is necessary until the bug of the Scroll PDF Exporter, which cuts diagram to two pages, is fixed.


IMPORTANT NOTE: In case of copy and paste the TRM skeleton to a new Wiki page, delete the Draw.IO diagrams and the PNGs, otherwise due to the linkage of the copied diagrams every change in the TRM Skeleton will effect also in the created TRM and vice versa!

See.
	- The title has to be named with the diagrams name
	- The anchor has the designation figure_x, whereby x is the number of the diagram

2. The Draw.IO diagram has to be inserted in the "Scroll Ignore" macro
	- Border has to be switched off in the macro edit
	- Toolbar has to be hidden in the macro edit

3. A PNG Export of the diagram has to be inserted in the "Scroll Only" macro, see Wiki page "Diagram Drawing Guidelines" how to do clone an existing diagram as suitable template forthis step.

The workaround with the additional PNG of the new diagram!

   -->
Scroll Title
anchorFigure_1
titleFigure 1: Example block diagram
Scroll Ignore
draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramDisplayName
lboxtrue
revision4
diagramNameTEF1001 block diagram
simpleViewerfalse
width
linksauto
tbstylehidden
diagramWidth641
Scroll Only

Main Components

Put top and bottom pics with labels of the real PCB here... like example diagram below

...

anchorFigure_2
titleFigure 2: main components example diagram

...

Table 1: TE0xxx-xx main components.

Add description list of PCB labels here...

Initial Delivery State

...

Storage device name

...

Content

...

Notes

...

..

...

..

...

Table 1: Initial delivery state of programmable devices on the module.

Boot Process

By default the ... supports QSPI and SD Card boot modes which is controlled by the MODE input signal from the B2B connector JM..

...

MODE Signal State

...

High or open

...

SD Card

...

Low or ground

...

QSPI Interface

Table 2: Selecting power-on boot device.

Signals, Interfaces and Pins

HTML
<!--
Connections and Interfaces or B2B Pin's which are accessible by User
  -->

Board to Board (B2B) I/Os

I/O signals connected to the SoCs I/O bank and B2B connector: 

...

Table x: General overview of PL I/O signals connected to the B2B connectors.

All PS MIO banks are powered by on-module DC-DC power rail. All PL I/O banks have separate VCCO input pins in the B2B connectors, valid VCCO should be supplied from the carrier board.

For detailed information about the pin out, please refer to the Pin-out Tables. 

The configuration of the PS I/Os MIOx, MIOx ... MIOx, ... depend on the carrier board peripherals connected to these pins.

HTML
<!--
TO-DO (future):
If Vivado board part files are available for this module, the standard configuration of the MIO pins by using this board part files should be mentioned here. This standard configuration of those pins are also apparent of the on-board peripherals of base-boards related to the module.
  -->

MGT Lanes

HTML
<!--
MGT lanes should be listed separately, as they are more specific than just general I/Os.  
  -->

MGT (Multi Gigabit Transceiver) lane consists of one transmit and one receive (TX/RX) differential pairs, two signals each or four signals total per one MGT lane. Following table lists lane number, MGT bank number, transceiver type, signal schematic name, board-to-board pin connection and FPGA pins connection:

...

  • MGT_RX0_P
  • MGT_RX0_N
  • MGT_TX0_P
  • MGT_TX0_N

...

  • JM3-8
  • JM3-10
  • JM3-7
  • JM3-9

...

  • MGTHRXP0_225, Y2
  • MGTHRXN0_225, Y1
  • MGTHTXP0_225, AA4
  • MGTHTXN0_225, AA3

...

  • MGT_RX1_P
  • MGT_RX1_N
  • MGT_TX1_P
  • MGT_TX1_N

...

  • JM3-14
  • JM3-16
  • JM3-13
  • JM3-15

...

  • MGTHRXP1_225, V2
  • MGTHRXN1_225, V1
  • MGTHTXP1_225, W4
  • MGTHTXN1_225, W3

...

  • MGT_RX4_P
  • MGT_RX4_N
  • MGT_TX4_P
  • MGT_TX4_N

...

  • JM1-12
  • JM1-10
  • JM1-6
  • JM1-4

...

  • MGTHRXP0_224, AH2
  • MGTHRXN0_224, AH1
  • MGTHTXP0_224, AG4
  • MGTHTXN0_224, AG3

...

  • MGT_RX5_P
  • MGT_RX5_N
  • MGT_TX5_P
  • MGT_TX5_N

...

  • JM1-24
  • JM1-22
  • JM1-18
  • JM1-16

...

  • MGTHRXP1_224, AF2
  • MGTHRXN1_224, AF1
  • MGTHTXP1_224, AF6
  • MGTHTXN1_224, AF5

...

Table x: MGT lanes.

Below are listed MGT banks reference clock sources.

...

Table x: MGT reference clock sources.

JTAG Interface

JTAG access to the ... is provided through B2B connector .... 

...

JTAG Signal

...

B2B Connector Pin

...

Table 5: JTAG interface signals.

System Controller CPLD I/O Pins

Special purpose pins are connected to smaller System Controller CPLD and have following default configuration:

...

Table x: System Controller CPLD I/O pins.

HTML
<!--
For the detailed function of the pins and signals, the internal signal assignment and implemented logic, look to the Wiki reference page SC CPLD of this module or into the bitstream file of the SC CPLD.
Add link to the Wiki reference page of the SC CPLD, if available.
   -->

Quad SPI Interface

Following line is just an example, change it to your needs.

Quad SPI Flash (U14) is connected to the Zynq PS QSPI0 interface via PS MIO bank 500, pins MIO1 ... MIO6.

Note that table column says "Signal Name", it should match the name used on the schematic.

...

Table x: Quad SPI interface signals and connections.

SD Card Interface

Describe SD Card interface  shortly here if the module has one...

...

Table x: SD Card interface signals and connections.

Ethernet Interface

On board Gigabit Ethernet PHY is provided with ...

Ethernet PHY connection

...

Table x: ...

USB Interface

USB PHY is provided with ...

...

Table x: ...

The schematic for the USB connector and required components is different depending on the USB usage. USB standard A or B connectors can be used for Host or Device modes. A Mini USB connector can be used for USB Device mode. A USB Micro connector can be used for Device mode, OTG Mode or Host Mode.

I2C Interface

On-board I2C devices are connected to MIO.. and MIO.. which are configured as I2C... by default. I2C addresses for on-board devices are listed in the table below:

...

Table x: I2C slave device addresses.

On-board Peripherals

HTML
<!--
Components on the Module, like Flash, PLL, PHY...
  -->

System Controller CPLD

The System Controller CPLD (U2) is provided by Lattice Semiconductor LCMXO2-256HC (MachXO2 Product Family). The  SC-CPLD is the central system management unit where essential control signals are logically linked by the implemented logic in CPLD firmware, which generates output signals to control the system, the on-board peripherals and the interfaces. Interfaces like JTAG and I2C between the on-board peripherals and to the FPGA module are by-passed, forwarded and controlled by the System Controller CPLD.

Other tasks of the System Controller CPLD are the monitoring of the power-on sequence and to display the programming state of the FPGA module.

For detailed information, refer to the reference page of the SC CPLD firmware of this module.

HTML
<!--
Put in link to the Wiki reference page of the firmware of the SC CPLD.
  -->

DDR Memory

By default TE0xxx module has ... DDRx SDRAM chips arranged into 32-bit wide memory bus providing total of 1 GBytes of on-board RAM. Different memory sizes are available optionally.

Quad SPI Flash Memory

On-board QSPI flash memory (U14) on the TE0745-02 is provided by Micron Serial NOR Flash Memory N25Q256A with 256 Mbit (32 MByte) storage capacity. This non volatile memory is used to store initial FPGA configuration. Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency used.

Note

SPI Flash QE (Quad Enable) bit must be set to high or FPGA is unable to load its configuration from flash during power-on. By default this bit is set to high at the manufacturing plant.

Gigabit Ethernet PHY

On-board Gigabit Ethernet PHY (U7) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U9), the 125MHz output clock signal CLK_125MHZ is connected to the pin J2-150 of B2B connector J2.

High-speed USB ULPI PHY

Hi-speed USB ULPI PHY (U32) is provided with USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0 via MIO28..39, bank 501 (see also section). The I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U33).

MAC Address EEPROM

A Microchip 24AA025E48 serial EEPROM (U23) contains a globally unique 48-bit node address, which is compatible with EUI-48(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. It is accessible over I2C bus with slave device address 0x53.

RTC - Real Time Clock

An temperature compensated Intersil ISL...

Programmable Clock Generator

There is a Silicon Labs I2C programmable quad PLL clock generator on-board (Si5338A, U2) to generate various reference clocks for the module.

...

IN1

...

-

...

Not used.

...

IN3

...

Reference input clock.

...

IN4

...

IN5

...

-

...

CLK0A

...

CLK1_P

...

FPGA bank 45.

...

CLK0_P

...

FPGA bank 45.

...

 Table : Programmable quad PLL clock generator inputs and outputs.

Oscillators

The module has following reference clock signals provided by on-board oscillators and external source from carrier board:

...

Table : Reference clock signals.

On-board LEDs

...

Table : On-board LEDs.

Power and Power-On Sequence

HTML
<!--
If power sequencing and distribution is not so much, you can join both sub sections together
  -->

Power Consumption

The maximum power consumption of a module mainly depends on the design running on the FPGA.

Xilinx provide a power estimator excel sheets to calculate power consumption. It's also possible to evaluate the power consumption of the developed design with Vivado. See also Trenz Electronic Wiki FAQ.

...

Table : Typical power consumption.

 * TBD - To Be Determined soon with reference design setup.

Power supply with minimum current capability of ...A for system startup is recommended.

For the lowest power consumption and highest efficiency of the on-board DC-DC regulators it is recommended to power the module from one single 3.3V supply. All input power supplies have a nominal value of 3.3V. Although the input power supplies can be powered up in any order, it is recommended to power them up simultaneously.

The on-board voltages of the TE07xx SoC module will be powered-up in order of a determined sequence after the external voltages '...', '...' and '...' are available. All those power-rails can be powered up, with 3.3V power sources, also shared. <-- What?

Warning
To avoid any damage to the module, check for stabilized on-board voltages should be carried out(i.e. power good and enable signals) before powering up any SoC's I/O bank voltages VCCO_x. All I/Os should be tri-stated during power-on sequence.

Power Distribution Dependencies

Regulator dependencies and max. current.

Put power distribution diagram here...

Figure : Module power distribution diagram.

See Xilinx data sheet ... for additional information. User should also check related base board documentation when intending base board design for TE07xx module.

Power-On Sequence

The TE07xx SoM meets the recommended criteria to power up the Xilinx Zynq MPSoC properly by keeping a specific sequence of enabling the on-board DC-DC converters dedicated to the particular functional units of the Zynq chip and powering up the on-board voltages.

Following diagram clarifies the sequence of enabling the particular on-board voltages, which will power-up in descending order as listed in the blocks of the diagram:

Put power-on diagram here...

Figure : Module power-on diagram.

Voltage Monitor Circuit

If the module has one, describe it here...

Power Rails

NB! Following table with examples is valid for most of the 4 x 5 cm modules but depending on the module model and specific design, number and names of power rails connected to the B2B connectors may vary.

...

Power Rail Name

...

B2B JM1 Pins

...

B2B JM2 Pins

...

Direction

...

VBAT_IN

...

Table : Module power rails.

Different modules (not just 4 x 5 cm ones) have different type of connectors with different specifications. Following note is for Samtec Razor Beam™ LSHM connectors only, but we should consider adding such note into included file in Board to Board Connectors section instead of here.

Note

Current rating of  Samtec Razor Beam™ LSHM B2B connectors is 2.0A per pin (2 adjacent pins powered).

Bank Voltages

...

Bank

...

Voltage

...

Voltage Range

...

Table : Module PL I/O bank voltages.

Board to Board Connectors

HTML
<!--
Generate new entry:
Replace with correct on for selected module series
  -->

...

Variants Currently In Production

HTML
<!--
Set correct link to the overview table of the product on english and german, if not available, set 
https://shop.trenz-electronic.de/de/Produkte/Trenz-Electronic/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/
  -->

...

Technical Specifications

Absolute Maximum Ratings

...

Parameter

...

Units

...

Reference Document

...

VIN supply voltage

...

V

...

Storage temperature

...

°C

...

Table : Module absolute maximum ratings.

...

diagram is necessary until the bug of the Scroll PDF Exporter, which cuts diagram to two pages, is fixed.


IMPORTANT NOTE: In case of copy and paste the TRM skeleton to a new Wiki page, delete the Draw.IO diagrams and the PNGs, otherwise due to the linkage of the copied diagrams every change in the TRM Skeleton will effect also in the created TRM and vice versa!

See page "Diagram Drawing Guidelines" how to clone an existing diagram as suitable template for the new diagram!

   -->
Scroll Title
anchorFigure_1
titleFigure 1: TEF1001-02 block diagram
Scroll Ignore

draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramDisplayName
lboxtrue
revision4
diagramNameTEF1001 block diagram
simpleViewerfalse
width
linksauto
tbstylehidden
diagramWidth641

Scroll Only

Image Added

Main Components

Scroll Title
anchorFigure_2
titleFigure 2: TEF1001-02 main components
Scroll Ignore

draw.io Diagram
bordertrue
viewerToolbartrue
fitWindowfalse
diagramNameTEF1001 main components
simpleViewerfalse
width
diagramWidth641
revision1

Scroll Only


Initial Delivery State

Storage device nameContentNotes
24LC128-I/ST not programmedUser content

24AA025E48 EEPROM's

User content not programmed

Valid MAC Address from manufacturer
Si5338A OTP Areanot programmed-
eMMC Flash MemoryEmpty, not programmedExcept serial number programmed by flash vendor

SPI Flash OTP Area

Empty, not programmed

Except serial number programmed by flash vendor

SPI Flash Quad Enable bit

Programmed

-

SPI Flash main array

demo design

-
HyperFlash Memorynot programmed-

eFUSE USER

Not programmed

-

eFUSE Security

Not programmed

-

Table 1: Initial delivery state of programmable devices on the module

Boot Process

4 of the 7 boot mode strapping pins (MIO2 ... MIO8) of the Xilinx Zynq-7000 SoC device are hardware programmed on the board, 3 of them are set by the SC CPLD firmware. The boot strapping pins are evaluated by the Zynq device soon after the 'PS_POR' signal is deasserted to begin the boot process (see section "Boot Mode Pin Settings" of Xilinx manual UG585).

The TE0782 board is programmed in the SC CPLD firmware to boot initially from the on-board QSPI Flash memory U38. See section Bootmode in the TE0782 SC CPLD reference Wiki page.

The JTAG interface of the module is provided for storing the data to the QSPI Flash memory through the Zynq-7000 device.

Signals, Interfaces and Pins

Board to Board (B2B) I/Os

Zynq-7000 SoC's I/O banks signals connected to the B2B connectors:

BankType

B2B Connector

I/O Signal Count

DifferentialVoltageNotes

10

HR

J3

44

22

User

Max voltage 3.3V

11

HR

J3

40

20

User

Max voltage 3.3V
12

HR

J2

40

20

User

Max voltage 3.3V

13

HR

J2

40

20

User

Max voltage 3.3V

33

HP

J1

48

23

User

Max voltage 1.8V
34HPJ14220UserMax voltage 1.8V

Table 2: General overview of board to board I/O signals

For detailed information about the pin-out, please refer to the Pin-out table.

MGT Lanes

The Xilinx Zynq-7000 SoC used on the TE0782 module has 16 MGT transceiver lanes. All of them are wired directly to B2B connectors J1 and J3. MGT (Multi Gigabit Transceiver) lane consists of one transmit and one receive (TX/RX) differential pairs, four signals total per one MGT lane with data transmission rates up to 12.5Gb/s per lane (Xilinx GTX transceiver). Following table lists lane number, FPGA bank number, transceiver type, signal schematic name, board-to-board pin connection and FPGA pins connection:

BankTypeLaneSignal NameB2B PinFPGA Pin
109GTX0
  • MGT_RX0_P
  • MGT_RX0_N
  • MGT_TX0_P
  • MGT_TX0_N
  • J3-32
  • J3-30
  • J3-31
  • J3-29
  • MGTXRXP0_109
  • MGTXRXN0_109
  • MGTXTXP0_109
  • MGTXTXN0_109
1
  • MGT_RX1_P
  • MGT_RX1_N
  • MGT_TX1_P
  • MGT_TX1_N
  • J3-28
  • J3-26
  • J3-27
  • J3-25
  • MGTXRXP1_109
  • MGTXRXN1_109
  • MGTXTXP1_109
  • MGTXTXN1_109
2
  • MGT_RX2_P
  • MGT_RX2_N
  • MGT_TX2_P
  • MGT_TX2_N
  • J3-24
  • J3-22
  • J3-23
  • J3-21
  • MGTXRXP2_109
  • MGTXRXN2_109
  • MGTXTXP2_109
  • MGTXTXN2_109
3
  • MGT_RX3_P
  • MGT_RX3_N
  • MGT_TX3_P
  • MGT_TX3_N
  • J3-20
  • J3-18
  • J3-19
  • J3-17
  • MGTXRXP3_109
  • MGTXRXN3_109
  • MGTXTXP3_109
  • MGTXTXN3_109
110GTX0
  • MGT_RX4_P
  • MGT_RX4_N
  • MGT_TX4_P
  • MGT_TX4_N
  • J3-16
  • J3-14
  • J3-15
  • J3-13
  • MGTXRXP0_110
  • MGTXRXN0_110
  • MGTXTXP0_110
  • MGTXTXN0_110
1
  • MGT_RX5_P
  • MGT_RX5_N
  • MGT_TX5_P
  • MGT_TX5_N
  • J3-12
  • J3-10
  • J3-11
  • J3-9
  • MGTXRXP1_110
  • MGTXRXN1_110
  • MGTXTXP1_110
  • MGTXTXN1_110
2
  • MGT_RX6_P
  • MGT_RX6_N
  • MGT_TX6_P
  • MGT_TX6_N
  • J3-8
  • J3-6
  • J3-7
  • J3-5
  • MGTXRXP2_110
  • MGTXRXN2_110
  • MGTXTXP2_110
  • MGTXTXN2_110
3
  • MGT_RX7_P
  • MGT_RX7_N
  • MGT_TX7_P
  • MGT_TX7_N
  • J3-4
  • J3-2
  • J3-3
  • J3-1
  • MGTXRXP3_110
  • MGTXRXN3_110
  • MGTXTXP3_110
  • MGTXTXN3_110
111GTX0
  • MGT_RX8_P
  • MGT_RX8_N
  • MGT_TX8_P
  • MGT_TX8_N
  • J1-1
  • J1-3
  • J1-2
  • J1-4
  • MGTXRXP0_111
  • MGTXRXN0_111
  • MGTXTXP0_111
  • MGTXTXN0_111
1
  • MGT_RX9_P
  • MGT_RX9_N
  • MGT_TX9_P
  • MGT_TX9_N
  • J1-5
  • J1-7
  • J1-6
  • J1-8
  • MGTXRXP1_111
  • MGTXRXN1_111
  • MGTXTXP1_111
  • MGTXTXN1_111
2
  • MGT_RX10_P
  • MGT_RX10_N
  • MGT_TX10_P
  • MGT_TX10_N
  • J1-9
  • J1-11
  • J1-10
  • J1-12
  • MGTXRXP2_111
  • MGTXRXN2_111
  • MGTXTXP2_111
  • MGTXTXN2_111
3
  • MGT_RX11_P
  • MGT_RX11_N
  • MGT_TX11_P
  • MGT_TX11_N
  • J1-13
  • J1-15
  • J1-14
  • J1-16
  • MGTXRXP3_111
  • MGTXRXN3_111
  • MGTXTXP3_111
  • MGTXTXN3_111
112GTX0
  • MGT_RX12_P
  • MGT_RX12_N
  • MGT_TX12_P
  • MGT_TX12_N
  • J1-17
  • J1-19
  • J1-18
  • J1-20
  • MGTXRXP0_112
  • MGTXRXN0_112
  • MGTXTXP0_112
  • MGTXTXN0_112
1
  • MGT_RX13_P
  • MGT_RX13_N
  • MGT_TX13_P
  • MGT_TX13_N
  • J1-21
  • J1-23
  • J1-22
  • J1-24
  • MGTXRXP1_112
  • MGTXRXN1_112
  • MGTXTXP1_112
  • MGTXTXN1_112
2
  • MGT_RX14_P
  • MGT_RX14_N
  • MGT_TX14_P
  • MGT_TX14_N
  • J1-25
  • J1-27
  • J1-26
  • J1-28
  • MGTXRXP2_112
  • MGTXRXN2_112
  • MGTXTXP2_112
  • MGTXTXN2_112
3
  • MGT_RX15_P
  • MGT_RX15_N
  • MGT_TX15_P
  • MGT_TX15_N
  • J1-29
  • J1-31
  • J1-30
  • J1-32
  • MGTXRXP3_112
  • MGTXRXN3_112
  • MGTXTXP3_112
  • MGTXTXN3_112

Table 3: MGT lanes


There are 2 clock sources for the GTX transceivers. MGT_CLK1 and MGT_CLK4 are connected directly to B2B connector J3 and J1, so the clock can be provided by the carrier board. Clocks MGT_CLK0, MGT_CLK3, MGT_CLK5 and MGT_CLK6 are provided by the on-board clock generator (U2). As there are no capacitive coupling of the data and clock lines that are connected to the connectors, these may be required on the user’s PCB depending on the application.

BankTypeClock signalSourceFPGA PinNotes
109GTXMGT_CLK3_PU2, CLK3AMGTREFCLK1P_109, AF10Supplied by on-board Si5338A
MGT_CLK3_NU2, CLK3BMGTREFCLK1N_109, AF9
110GTXMGT_CLK0_PU2, CLK2AMGTREFCLK0P_110, AA8Supplied by on-board Si5338A
MGT_CLK0_NU2, CLK2BMGTREFCLK0N_110, AA7
MGT_CLK1_NJ3-39MGTREFCLK1P_110, AC8Supplied by B2B connector J3
MGT_CLK1_PJ3-37MGTREFCLK1N_110, AA7
111GTXMGT_CLK4_NJ1-40MGTREFCLK0P_111, U8Supplied by B2B connector J1
MGT_CLK4_PJ1-38MGTREFCLK0N_111, U7
MGT_CLK5_PU2, CLK1AMGTREFCLK1P_111, W8Supplied by on-board Si5338A
MGT_CLK5_NU2, CLK1BMGTREFCLK1N_111, W7
112GTXMGT_CLK6_PU2, CLK0AMGTREFCLK0P_112, N8Supplied by on-board Si5338A
MGT_CLK6_NU2, CLK0BMGTREFCLK0N_112, N7

Table 4: MGT reference clock sources

JTAG Interface

JTAG access to the Xilinx Zynq-7000 is provided through B2B connector J3.

JTAG Signal

B2B Connector Pin

TMSJ3-142
TDIJ3-147
TDOJ3-148
TCKJ3-141

Table 5: Zynq JTAG interface signals


JTAG access to the LCMXO2-1200HC System Controller CPLD U14 is provided through B2B connector J3.


JTAG Signal

B2B Connector Pin

M_TMSJ3-82
M_TDIJ3-87
M_TDOJ3-88
M_TCKJ3-81

Table 6: System Controller CPLD JTAG interface signals

Pin J3-136 'JTAGENB' of B2B connector J3 is used to access the JTAG interface of the SC CPLD. Set high to program the System Controller CPLD via JTAG interaface.

System Controller CPLD I/O Pins

Special purpose pins are connected to System Controller CPLD and have following default configuration:

Pin NameDirectionFunctionDefault Configuration
BOOTMODEininsignal forwarded to MIO9 and currently used as UART RX line
CONFIGXinoutsignal forwarded to MIO8 and currently used as UART TX line
RESINinnRESETexternal Board Reset
M_TDOoutCPLD JTAG interface



-
M_TDIin
M_TCKin
M_TMSin
JTAGENBinenable JTAGpull high for programming SC CPLD firmware
I2C_SCLin / outI²C data lineI²C bus of board

I2C_SDAinI²C clock
CPLD_IOin / outuser GPIOcurrently not used
ETH1_RESEToutreset GbE PHY U18see current SC CPLD firmware
OTG-RSToutreset USB2 PHYs
U4 and U8
see current SC CPLD firmware
RTC_INTininterruptinterrupt from RTC
PS_SRSToutZynq control signal



reset PS of Zynq-7000 SoC
DONEinPL configuration completed
PROG_BoutPL configuration reset signal
INITinLow active FPGA initialization pin or configuration error signal
PS_PORoutPS power-on reset
BM0/MIO5out

Bootmode Pins

currently configured in SC CPLD firmare to boot from QSPI Flash

BM2/MIO4out
BM3/MIO2out
MIO8inuser MIO pins

currently used as UART interface
MIO9out
MMC_RSToutReset MMC Flashsee current SC CPLD firmware
ETH1-RESET33inreset GbE PHY U18reset signal from Zynq-7000 level shifted to 1.8V
OTG-RST33in

reset USB2 PHYs
U4 and U8

reset signal from Zynq-7000 level shifted to 1.8V
LED1 ... LED2outLED status signalsee current CPLD firmware
CPLD_GPIO0 ... CPLD_GPIO5in / outuser GPIOcurrently not used
EN_1VoutPower control






enable signal DCDC U13 '1V'
PG_1Vinpower good signal DCDC U13 '1V'
EN_1.0V_MGToutenable signal DCDC U16 '1.0V_MGT'
PG_1.0V_MGTinpower good signal DCDC U16 '1.0V_MGT'
EN_1.2V_MGToutenable signal DCDC U16 '1.2V_MGT'
PG_1.2V_MGTinpower good DCDC U16 '1.2V_MGT'
EN_1.8Voutenable signal DCDC U16 '1.8V'
PG_1.8Vinpower good signal DCDC U16 '1.8V'
EN_3.3Voutenable signal DCDC U16 '3.3V'
PG_3.3Vinpower good signal DCDC U16 '3.3V'
PG_1V5inpower good signal DCDC U23 '1.5V'

Table 7: System Controller CPLD special purpose pins.

See also TE0782 CPLD reference Wiki page.

Default PS MIO Mapping

MIOFunctionConnected to
0USB2 PHYs ResetSC CPLD (used as level translator)
1QSPI0SPI Flash-CS
2QSPI0SPI Flash-DQ0
3QSPI0SPI Flash-DQ1
4QSPI0SPI Flash-DQ2
5QSPI0SPI Flash-DQ3
6QSPI0SPI Flash-SCK
7Ethernet PHY1 ResetSC CPLD (used level translator)
8UART TXoutput, muxed to B2B by the SC CPLD
9UART RXinput, muxed to B2B by the SC CPLD
10SDIO1 D0eMMC DAT0
11SDIO1 CMDeMMC CMD
12SDIO1 CLKeMMC CLK
13SDIO1 D1eMMC DAT1
14SDIO1 D2eMMC DAT2
15SDIO1 D3eMMC DAT3
16..27ETH0Ethernet RGMII PHY
28..39USB0USB0 ULPI PHY
40...51USB1USB1 ULPI PHY
52ETH0 MDC-
53ETH0 MDIO-

Table 8: Zynq PS MIO mapping

Gigabit Ethernet

The TE0782 is equipped with two Marvell Alaska 88E1512 Gigabit Ethernet PHYs (U18 (ETH1) and U20 (ETH2)). The transceiver PHY of ETH1 is connected to the Zynq PS Ethernet GEM0. The I/O Voltage is fixed at 1.8V for HSTL signaling. The reference clock input for both PHYs is supplied from an on board 25MHz oscillator (U11), the 125MHz output clock of both PHYs are connected to Zynq's PL bank 35.

ETH1 PHY connection:

PHY PINZynq PS / PLSystem Controller CPLDNotes
MDC/MDIOMIO52, MIO53--
LED0Bank 35, Pin B12--
LED1Bank 35, Pin C12--
InterruptBank 35, Pin A15--
CONFIGBank 35, Pin F14-When pin connected to GND, PHY Address is strapped to 0x00 by default
RESETn-Pin 53ETH1_RESET33 (MIO7) -> SC CPLD -> ETH1_RESET
RGMIIMIO16..MIO27
-
MDI--on B2B J2 connector

Table 9: General overview of the Gigabit Ethernet1 PHY signals


ETH2 PHY connection:

PHY PINZynq PS / PLSystem Controller CPLDNotes
MDC/MDIOBank 35, Pin C17/B17--
LED0Bank 35, Pin K15--
LED1Bank 35, Pin B16--
InterruptBank 35, Pin A17--
CONFIGBank 35, Pin E15-When pin connected to GND, PHY Address is strapped to 0x00 by default
RESETnBank 35, Pin B15--
RGMIIBank 9--
MDI-

-

on B2B J2 connector

Table 10: General overview of the Gigabit Ethernet2 PHY signals

USB Interface

The TE0782 is equipped with two USB PHY's USB3320 from Microchip (U4 (USB0) and U8 (USB1)). The ULPI interface of USB0 is connected to the Zynq PS USB0, ULPI interface of USB1 to Zynq PS USB1. The I/O Voltage is fixed at 1.8V.

The reference clock input of both PHY's is supplied from an on board 52MHz oscillator (U7).


USB0 PHY connection:

PHY PinZynq PS / PLCPLDB2B Connector J2Notes
ULPIMIO28..39--Zynq USB0 MIO pins are connected to the PHY
REFCLK---52MHz from on board oscillator (U7)
REFSEL[0..2]---000 GND, select 52MHz reference Clock
RESETBMIO0OTG_RESET33-OTG_RESET33 -> SC CPLD -> OTG_RESET
CLKOUTMIO36--Connected to 1.8V selects reference clock operation mode
DP,DM--USB1_D_P, USB1_D_NUSB Data lines
CPEN--VBUS1_V_ENExternal USB power switch active high enable signal
VBUS--USB1_VBUSConnect to USB VBUS via a series resistor. Check reference schematic.
ID--OTG1_IDFor an A-Device connect to ground, for a B-Device left floating

Table 11: General overview of the USB0 PHY signals


USB1 PHY connection:

PHY PinZynq PS / PLCPLDB2B Connector J2Notes
ULPIMIO40..51--Zynq USB1 MIO pins are connected to the PHY
REFCLK---52MHz from on board oscillator (U7)
REFSEL[0..2]---000 GND, select 52MHz reference Clock
RESETBMIO0OTG_RESET33-OTG_RESET33 -> SC CPLD -> OTG_RESET
CLKOUTMIO48--Connected to 1.8V selects reference clock operation mode
DP,DM--USB2_D_P, USB2_D_NUSB Data lines
CPEN--VBUS2_V_ENExternal USB power switch active high enable signal
VBUS--USB2_VBUSConnect to USB VBUS via a series resistor. Check reference schematic.
ID--OTG2_IDFor an A-Device connect to ground, for a B-Device left floating

Table 12: General overview of the USB1 PHY signals

I2C Interface

The on-board I2C components are connected to bank 35 pins L15 (I2C_SDA) and L14 (I2C_SCL).

I2C addresses for on-board components:

DeviceICDesignatorI2C-AddressNotes
EEPROM24LC128-I/STU260x53user data
EEPROM24AA025E48T-I/OTU220x50MAC address EEPROM
EEPROM24AA025E48T-I/OTU240x51MAC address EEPROM
RTCISL12020MIRZU170x6FTemperature compensated real time clock
Battery backed RAMISL12020MIRZU170x57Integrated in RTC
PLLSI5338A-B-GMRU20x70-
SC CPLDLCMXO2-1200HC-4TG100IU14user-

Table 13: Address table of the I2C bus slave devices

Pin Definitions

Pins with names ending with _VRN and _VRP are connected to Zynq PL HP bank special purpose pins VRN/VRP and can be routed to DCI calibration resistors on the baseboard. Otherwise they are usable as general purpose I/Os.

Bank 35 has 100 ohm DCI calibration resistors installed, it is also possible to "borrow" the DCI calibration from bank 35 for banks 34 and 33. For more detailed information about the DCI check Xilinx documentation.

On-board Peripherals

System Controller CPLD

The System Controller CPLD (U14) is provided by Lattice Semiconductor LCMXO2-1200HC (MachXO2 product family). It is the central system management unit with module specific firmware installed to monitor and control various signals of the FPGA, on-board peripherals, I/O interfaces and module as a whole.

See also TE0782 CPLD reference Wiki page.

eMMC Flash Memory

eMMC Flash memory device (U15) is connected to the Zynq PS MIO bank 500 pins MIO10..MIO15. eMMC chips MTFC4GMVEA-4M IT (Flash NAND-IC 2x 16 Gbit) is used with 4 GByte of memory density.

DDR3L Memory

By default TE0782-02 module has two 16-bit wide IM (Intelligent Memory) IM4G16D3FABG-125I DDR3L SDRAM (DDR3-1600 Speedgrade) chips (U10, U19) arranged into 32-bit wide memory bus providing total of 1 GBytes of on-board RAM.

Quad SPI Flash Memory

Two quad SPI compatible serial bus flash memory for FPGA configuration file storage is provided by Spansion S25FL256SAGBHI20 (U38) with 256 Mbit (32 MByte) memory density. After configuration completes the remaining free memory can be used for application data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths to be used. The maximum data transfer rate depends on the bus width and clock frequency.

Gigabit Ethernet PHYs

On-board Gigabit Ethernet PHYs (U18, U20) are provided by Marvell Alaska 88E1512. The Ethernet PHYs' RGMII interfaces are connected to the Zynq's PS MIO bank 501 and to PL bank 9. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of both PHYs is supplied from an on-board 25.000000 MHz oscillator (U11).

High-speed USB ULPI PHYs

Hi-speed USB ULPI PHYs (U4. U8) are provided with USB3320 from Microchip. The ULPI interfaces are connected to the Zynq PS USB0 and USB1 via MIO28..51, bank 501 (see also section USB interface). The I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U7).

MAC Address EEPROMs

Two Microchip 24AA025E48 serial EEPROMs (U22, U24) contain globally unique 48-bit node address, which are compatible with EUI-48(TM) specification. The devices are organized as two blocks of 128 x 8 Kbit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. The MAC address EEPROMS areaccessible over I2C bus (see also section I²C interface).

Configuration EEPROM

The TE0782 board contains one EEPROM (U26) for configuration and general user purposes. The EEPROMs is provided by Microchip 24LC128-I/ST with 128 KBit memory density, the EEPROM is areaccessible over I2C bus (see also section I²C interface).

Programmable Clock Generator

There is a Silicon Labs I2C programmable clock generator Si5338A (U2) chip on-board. It's output frequencies can be programmed using the I2C bus address 0x70 or 0x71. Default address is 0x70, IN4/I2C_LSB pin must be set to high for address 0x71.

A 25.000000 MHz oscillator (U3) is connected to the pin IN3 and is used to generate the output clocks. The output voltage of the oscillator is provided by the 1.8V power rail, thus making output frequency available as soon as 1.8V is present. All 4 of the Si5338 clock outputs are connected to the MGT banks of the Zynq device. It is possible to use the clocks connected to the GTR bank in the user's logic design. This is achieved by instantiating a IBUFDSGTE buffer in the design.

Once running, the frequency and other parameters can be changed by programming the device using the I2C bus connected between the FPGA (master) and clock generator (slave). For this, proper I2C bus logic has to be implemented in FPGA.

SignalFrequencyNotes
IN1/IN2user

External clock signal supply from B2B connector J3, pins J3-38 / J3-40

IN3

25.000000 MHz

Fixed input clock signal from reference clock generator SiT8008BI-73-18S-25.000000E (U3)

IN4-LSB of the default I2C address, wired to ground mean address is 0x70

IN5

-

Not connected

IN6

-

Wired to ground
CLK0 A/B

-

reference clock 0 of Bank 112 GTX

CLK1 A/B

-

reference clock 1 of Bank 111 GTX

CLK2 A/B

-

reference clock 0 of Bank 110 GTX

CLK3 A/B-reference clock 1 of Bank 109 GTX

Table 14: General overview of the on-board quad clock generator I/O signals

Oscillators

The module has following reference clock signals provided by on-board oscillators and external source from carrier board:

Clock SourceSchematic NameFrequencyClock Destination
SiTime SiT8008AI oscillator, U61PS_CLK33.333333 MHzZynq SoC U1, pin A22
SiTime SiT8008BI oscillator, U21-25.000000 MHzQuad PLL clock generator U2, pin 3
SiTime SiT8008AI oscillator, U7-52.000000 MHzUSB2 PHYs U4 and U8, pin 26
SiTime SiT8008BI oscillator, U11-25.000000 MHzGbE PHYs U18 and U20, pin 34

Table 15: Reference clock signals

On-board LEDs

LEDColorConnected toDescription and Notes
D1RedSystem Controller CPLD U14, bank 3Exact function is defined by SC CPLD firmware
D2GreenSystem Controller CPLD U14, bank 3

Table 16: On-board LEDs

Power and Power-on Sequence

Power Supply

Power supply with minimum current capability of 4A for system startup is recommended.

Power Consumption

Power InputTypical Current
VINTBD*
C3.3VTBD*

Table 17: Power consumption

 * TBD - To Be Determined soon with reference design setup.

Warning
To avoid any damage to the module, check for stabilized on-board voltages should be carried out (i.e. power good and enable signals) before powering up any Zynq's I/O bank voltages VCCO_x. All I/Os should be tri-stated during power-on sequence.

Power Distribution Dependencies

The Trenz TE0782 SoM is equipped with two quad DC-DC voltage regulators to generate required on-board voltage levels 1V, 3.3V, 1.8V, 1.2V_MGT, 1V_MGT. Additional voltage regulators are used to generate voltages 1.5V, VTT, VTTREF and 1.8V_MGT.

The power supply voltage 'C3.3V' of System Controller CPLD of the SoM have to be externally supplied with 3.3V nominal.

There are following dependencies how the initial voltages of the power rails on the B2B connectors are distributed to the on-board DC-DC converters, which power up further DC-DC converters and the particular on-board voltages:

Scroll Title
anchorFigure_3
titleFigure 3: TE0782-02 Power Distribution Diagram
Scroll Ignore


Scroll Only



See also Xilinx datasheet DS191 for additional information. User should also check related base board documentation when intending base board design for TE0782 module.

Power-On Sequence

Power-on sequence is handled by the System Controller CPLD using "Power good"-signals from the voltage regulators:

Scroll Title
anchorFigure_4
titleFigure 4: TE0782-02 Power-on Sequence Diagram
Scroll Ignore


Scroll Only



Power Rails

Power Rail Name on B2B ConnectorJ1 PinsJ2 PinsJ3 PinsDirectionNotes
VIN-165, 166, 167, 168-Inputexternal power supply voltage
C3.3V-147, 148-Inputexternal 3.3V power supply voltage
3.3V-

111, 112, 123, 124, 135 136

169, 170, 171, 172

-Outputinternal 3.3V voltage level
1.8V169, 170, 171, 172--Outputinternal 1.8V voltage level
VCCIO_10--99, 100Inputhigh range I/O bank voltage
VCCIO_11--159, 160Inputhigh range I/O bank voltage
VCCIO_12-159, 160-Inputhigh range I/O bank voltage
VCCIO_13-99, 100-Inputhigh range I/O bank voltage
VCCIO_3399, 100--Inputhigh performance I/O bank voltage
VCCIO_34159, 160--Inputhigh performance I/O bank voltage
VBAT_IN--124Inputbackup battery voltage

Table 18: Module power rails

Bank Voltages

BankSchematic NameVoltageRangeNotes
0-3.3 V-FPGA configuration
502-1.5 V-DDR3-RAM port
109 / 110 / 111 / 112-1.2 V-MGT
500 / 501-3.3 V-MIO banks
9 (HR)-1.8 V1.2V to 3.3VETH2 RGMII
10 (HR)VCCIO_10user1.2V to 3.3V-
11 (HR)VCCIO_11user1.2V to 3.3V-
12 (HR)VCCIO_12user1.2V to 3.3V-
13 (HR)VCCIO_13user1.2V to 3.3V-
33 (HP)VCCIO_33user1.2V to 1.8V-
34 (HP)VCCIO_34user1.2V to 1.8V-
35 (HP)-1.8 V1.2V to 1.8VHyper-RAM, Ethernet, I²C

Table 19: Module I/O bank voltages

See Xilinx Zynq-7000 datasheet DS191 for the voltage ranges allowed.

Board to Board Connectors

The TE0782 SoM has three 160-pin double-row ASP-122952-01  Samtec connectors on the bottom side which mate with ASP-122953-01 Samtec connectors on the baseboard. Mating height is 5 mm.

Variants Currently In Production

Trenz shop TE0782 overview page
English pageGerman page

Technical Specifications

Absolute Maximum Ratings

Parameter

MinMax

Units

Notes

VIN supply voltage

-0.3

15

V

LTM4644 datasheet
C3.3V supply voltage-0.33.6VLTM4644 datasheet
VBAT supply voltage-0.36VTPS780180 datasheet
PS I/O supply voltage, VCCO_PSIO-0.53.6VXilinx document DS191
PS I/O input voltage-0.4VCCO_PSIO + 0.55VXilinx document DS191
HP I/O bank supply voltage, VCCO-0.52.0VXilinx document DS191
HP I/O bank input voltage-0.55VCCO + 0.55VXilinx document DS191
HR I/O bank supply voltage, VCCO-0.53.6VXilinx document DS191
HR I/O bank input voltage-0.55VCCO + 0.55VXilinx document DS191
Reference Voltage pin-0.52VXilinx document DS191
Differential input voltage-0.42.625VXilinx document DS191
MGT reference clocks absolute input voltage-0.51.32VXilinx document DS191
MGT absolute input voltage-0.51.26VXilinx document DS191

Voltage on SC CPLD pins

-0.5

3.75

V

Lattice Semiconductor MachXO2 datasheet

Storage temperature

-40

+85

°C

See eMMC MTFC4GMVEA datasheet

Table 20: Module absolute maximum ratings

Recommended Operating Conditions

ParameterMinMaxUnits
Reference Document
Notes
VIN supply voltage
Operating temperature

Table : Module recommended operating conditions.

Note
Please check Xilinx datasheet ... for complete list of absolute maximum and recommended operating ratings.

Operating Temperature Ranges

Commercial grade: 0°C to +70°C.

Extended grade: 0°C to +85°C.

Industrial grade: -40°C to +85°C.

Module operating temperature range depends also on customer design and cooling solution. Please contact us for options.

Physical Dimensions

  • Module size: ... mm × ... mm.  Please download the assembly diagram for exact numbers.

  • Mating height with standard connectors: ... mm.

  • PCB thickness: ... mm.

  • Highest part on PCB: approx. ... mm. Please download the step model for exact numbers.

All dimensions are given in millimeters.

Put mechanical drawings here...

Figure : Module physical dimensions drawing.

Revision History

Hardware Revision History

...

Notes

...

01

...

Prototypes

Table : Module hardware revision history.

Hardware revision number can be found on the PCB board together with the module model number separated by the dash.

Put picture of actual PCB showing model and hardware revision number here...

Figure : Module hardware revision number.

Document Change History

HTML
<!--
Generate new entry:
1.add new row below first
2.Copy "Page Information Macro(date)" Macro-Preview, Metadata Version number, Author Name and description to the empty row. Important Revision number must be the same as the Wiki document revision number
3.Update Metadata = "Page Information Macro (current-version)" Preview+1 and add Author and change description.
  -->

...

Date

...

Revision

...

Contributors

...

Description

...

Page info
infoTypeCurrent version
dateFormatyyyy-MM-dd
prefixv.
typeFlat

...

  • updated rules for draw.IO diagram

...

  • Added new rule for draw.IO diagram with workaround for "Scroll PDF Exporter"

...

...

  • nothing new (recreated destroyed document)

...

2018-05-09

...

v.63

...

  • Rework chapter currently available products

...

...

  • Remove Link to Download

...

v.58

...

  • PDF-Link to online version of the TRM fixed
  • Online Link of download area fixed

...

2017-09-06

...

v.56

...

2017-09-02

...

v.54

...

2017-08-27

...

v.43

...

  • New template revision 1.6.
  • Moved Boot Process between Overview and Signals, Interfaces and Pins section.

...

  • New template revision 1.5
  • MGT Lanes section changed.
  • Programmable PLL Clock section changed.
  • "Figure" and "Table" labels added.
  • Module variants and temperatures ranges sections improved.
  • Comments added/changed, also formatted as italic now.

...

2017-08-07

...

v.32

...

2017-07-14

...

v.25

...

John Hartfiel

...

Removed weight section update template version

...

2017-06-08

...

v.20

...

John Hartfiel

...

Add revision number and update document change history

...

2017-05-30

...

v.1

...

Jan Kumann

...

Initial document.

11.412.6VLTM4644 datasheet, 12V nominal
C3.3V supply voltage3.33.465VLCMXO2-256HC, LTM4644 datasheet
VBAT supply voltage2.25.5VTPS780180 datasheet
PS I/O supply voltage, VCCO_PSIO1.7103.465VXilinx document DS191
PS I/O input voltage–0.20VCCO_PSIO + 0.20VXilinx document DS191
HP I/O banks supply voltage, VCCO1.141.89VXilinx document DS191
HP I/O banks input voltage-0.20VCCO + 0.20VXilinx document DS191
HR I/O banks supply voltage, VCCO1.143.465VXilinx document DS191
HR I/O banks input voltage-0.20VCCO + 0.20VXilinx document DS191
Differential input voltage-0.22.625VXilinx document DS191
Voltage on SC CPLD pins-0.33.6VLattice Semiconductor MachXO2 datasheet
Operating Temperature Range-4085°CXilinx document DS191, industrial grade Zynq temperarure range

Table 21: Recommended operating conditions


Module operating temperature range depends also on customer design and cooling solution. Please contact us for options.

Note
See Xilinx datasheet DS191 for more information about absolute maximum and recommended operating ratings for the Zynq-7000 chips.

Physical Dimensions

  • Module size: 85 mm × 85 mm.  Please download the assembly diagram for exact numbers.

  • Mating height with standard connectors: 5 mm

  • PCB thickness: 1.7 mm

All dimensions are shown in millimeters.


Scroll Title
anchorFigure_5
titleFigure 5: Module physical dimensions drawing


Revision History

Hardware Revision History

DateRevision

Notes

PCN LinkDocumentation Link
-02current available board revision-TE0782-02
2015-05-2701Prototype only--

Table 22: Hardware revision history table


Scroll Title
anchorFigure_6
titleFigure 6: Module hardware revision number


Document Change History

HTML
<!--
Generate new entry:
1.add new row below first
2.Copy "Page Information Macro(date)" Macro-Preview, Metadata Version number, Author Name and description to the empty row. Important Revision number must be the same as the Wiki document revision number
3.Update Metadata = "Page Information Macro (current-version)" Preview+1 and add Author and change description.
  -->
DateRevisionContributorsDescription

Page info
modified-date
modified-date
dateFormatyyyy-MM-dd

Page info
infoTypeCurrent version
dateFormatyyyy-MM-dd
prefixv.
typeFlat

Page info
infoTypeModified by
dateFormatyyyy-MM-dd
typeFlat

  • initial release

...

Disclaimer

Include Page
IN:Legal Notices
IN:Legal Notices