You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »

Download PDF version of this document.

Overview

The Trenz Electronic TE0818 is an industrial grade MPSoC SOM integrating a Xilinx Zynq UltraScale+ MPSoC, DDR4 SDRAM with 64-Bit width data bus connection, SPI Boot Flash memory for configuration and operation, transceivers and powerful switch-mode power supplies for all on-board voltages. A large number of configurable I/Os is provided via rugged high-speed stacking connections in a compact 5.2 cm x 7.6 cm form factor.

Refer to http://trenz.org/te0818-info for the current online version of this manual and other available documentation.

Key Features

  • SoC
    • Device: ZU6 / ZU9 / ZU15 1)
    • Engine: CG / EG  1)
    • Speedgrade: -1 / -2  1)
    • Temperature Range: Extended / Industrial 1)
    • Package: FFVC900
  • RAM/Storage
    • 4 GByte DDR4 SDRAM 2)
    • 2 x 64 MByte Serial Flash 3)
    • EEPROM with MAC address
  • On Board
    • Oscillator
  • Interface
    • 4 x B2B Connector (ADM6)
      • up to 204 PL IO

        • HP: 156
        • HD: 48
      • up to 65 PS MIO

      • 4 GTR
      • 16 GTH
      • I2C, JTAG, CONFIG
  • Power
    • 3.3 V power supply via B2B Connector needed 4).
  • Dimension
    • 76 mm x 52 mm
  • Notes
    1) Please, take care of the possible assembly options. Furthermore, check whether the power supply is powerful enough for your FPGA design.
    2) Up to 32 GByte are possible with a maximum bandwidth of 2400 MBit/s.
    3) Please, take care of the possible assembly options.
    4) Dependant on the assembly option a higher input voltage may be possible


TExxxx block diagram

Main Components

TExxxx main components
  1. SoC, U1
  2. DDR4, U2, U3, U9, U12
  3. Quad SPI Flash, U7, U17
  4. Connector, J1, J2, J3, J4
  5. EEPROM, U4
  6. Clock Generator, U5
  7. Oscillator, U25, U32

Initial Delivery State

Storage device name

Content

Notes

DDR4 SDRAMnot programmed
Quad SPI Flashnot programmed
EEPROMnot programmed besides factory programmed MAC address
Programmable Clock Generatornot programmed
Initial delivery state of programmable devices on the module

Signals, Interfaces and Pins

Connectors

Connector TypeDesignatorInterfaceIO CNT 1)Notes
B2BJM1MGT PL12 x MGT (RX/TX)
B2BJM1HP52 SE / 24 DIFF
B2BJM2MGT PS2 x MGT CLK
B2BJM2CLKDIFF CLK
B2BJM2MGT PL4 x MGT (RX/TX)
B2BJM2MGT PS4 x MGT (RX/TX)
B2BJM2CFGJTAG
B2BJM2CFGMODE
B2BJM3HD48 SE / 24 DIFF
B2BJM3MGT PL3 x MGT CLK
B2BJM3CLKDIFF CLK
B2BJM3MIO65 GPIO
B2BJM4HP104 SE / 48 DIFF

1) IO CNT depends on assembly variant. E.g. the MGTs are not available for all FPGAs

Board Connectors


Test Points

Test PointSignalNotes1)
TP1PLL_SCLpulled-up to PS_1V8
TP2PLL_SDApulled-up to PS_1V8
TP3LP_DCDC
TP4DCDCIN
TP5GND
TP6TCK
TP7PL_DCIN
TP8GND
TP9GT_DCDC
TP10GND
TP11TDI
TP12TDO
TP13TMS
TP14PS_1V8
TP15No Net NameREF3312AIDCKT (U33) ouput voltage
TP16FP_0V85
TP17DDR_2V5
TP18DDR_PLL
TP19PL_VCCINT
TP20AUX_R
TP21AVTT_R
TP22AUX_L
TP24AVCC_R
TP26AVTT_L
TP28AVCC_L
TP30PS_PLL
TP31PS_AVTT
TP32LP_0V85
TP33PS_AUX
TP34PS_AVCC
TP36POR_B

1) Direction:

    • IN: Input from the point of view of this board.
    • OUT: Output from the point of view of this board.
Test Points Information

On-board Peripherals

Chip/InterfaceDesignatorConnected ToNotes

DDR4 SDRAM

U2, U3, U9, U12SoC - PS

Quad SPI Flash

U7, U17SoC - PSBooting.

EEPROM

U4B2B - J2

Clock Generator

U5SoC, B2B

Oscillator

U25Clock Generator25 MHz

Oscillator

U32SoC33.333333 MHz
On board peripherals

Configuration and System Control Signals

Connector+Pin

Signal Name

Direction1)Description
JM1.A45POR_OVERRIDEINOverride power-on reset delay 2).
JM2.A30PG_PLL_1V8OUTSI_PLL_1V8 power rail powered-up.
JM2.A31ERR_OUTOUTPS error indication 2).
JM2.A34ERR_STATUSOUTPS error status 2).
JM2.A35LP_GOODOUTLow-power domain powered-up. Pulled up to 3.3VIN.
JM2.A36PLL_SCLINI2C clock. Pulled up to PS_1V8.
JM2.A37PLL_SDAIN/OUTI2C data. Pulled up to PS_1V8.
JM2.A40PG_GT_LOUTLeft GTH Transceivers powered-up.
JM2.A41EN_PSGTINEnable GTR transceiver power-up.
JM2.A44 / JM2.A45 /
JM2.A46 / JM2.A47
TCK / TDI / TDO / TMSSignal-dependent

JTAG configuration and debugging interface.

JTAG reference voltage: PS_1V8

JM2.B29PG_PSGTOUTGTR transceivers powered-up.
JM2.B30PROG_BIN/OUTPower-on reset 2). Pulled-up to PS_1V8.
JM2.B33SRST_BINSystem reset 2). Pulled-up to PS_1V8.
JM2.B34INIT_BIN/OUTInitialization completion indicator after POR 2). Pulled-up to PS_1V8.
JM2.B37PG_PLOUTProgrammable logic powered-up.
JM2.B38EN_FPDINEnable full-power domain power-up.
JM2.B41PG_FPDOUTFull-power domain powered-up.
JM2.B42EN_LPDINEnable low-power domain power-up.
JM2.B45PG_DDROUTDDR power supply powered-up.
JM2.B46DONEOUTPS done signal 2). Pulled-up to PS_1V8.
JM2.B47EN_DDRINEnable DDR power-up.
JM2.C30EN_GT_LINEnable left GTH transceiver power-up.
JM2.C31MRINManual reset.
JM2.C32PLL_SEL0INPLL clock selection.
JM2.C33PLL_RSTINPLL reset. Pulled-up to PS_1V8.
JM2.C35EN_PLINEnable programable logic power-up.
JM2.C36EN_GT_RINEnable right GTH transceiver power-up.
JM2.C37PLL_FDECINPLL Frequency decrementation.
JM2.C44 / JM2.C45 / JM2.C46 / JM2.C47MODE3..0INBoot mode selection 2):
  • JTAG
  • QUAD-SPI (32 Bit)
  • SD1 (2.0)
  • eMMC (1.8 V)
  • SD1 LS (3.0)

Supported Modes depends also on used Carrier.

JM2.D29EN_PLL_PWRINEnable PLL power supply.
JM2.D30PLL_FINCINPLL Frequency incrementation.
JM2.D31PLL_LOLnOUTLoss of lock status.
JM2.D32PLL_SEL1INPLL clock selection.
JM2.D33PG_GT_ROUTRight GTH Transceivers powered-up.
JM2.D37PSBATTINPS RTC Battery supply voltage 2) 3).
JM2.D38PUDC_BINConfiguration pull-ups setting 2). Pulled-up to PL_1V8.
JM2.D45 / JM2.D46DX_P / DX_N-SoC temperatur sensing diode pins 2).

1) Direction:

    • IN: Input from the point of view of this board.
    • OUT: Output from the point of view of this board.

2) See UG1085 for additional information.

3) See Recommended Operating Conditions.

Controller signal.

Power and Power-On Sequence


Power Rails

Power Rail Name/ Schematic NameConnector + PinDirection1)Notes
VCCO_66JM1.A32 / JM1.A33IN
VREF_66JM1.A41IN
3.3VINJM1.A54 / JM1.A55 / JM1.B55 / JM1.B56IN

PL_1V8

JM1.C32 / JM1.C33 / JM1.D33 / JM1.D34OUT
PL_DCINJM1.C56 / JM1.C57 / JM1.C58 / JM1.C59 / JM1.C60 / JM1.D56 / JM1.D57 / JM1.D58 / JM1.D59 / JM1.D60IN
LP_DCDCJM2.A50 / JM2.A51 / JM2.A52 / JM2.B50 / JM2.B51 / JM2.B52 / JM2.C50 / JM2.C51 / JM2.C52 / JM2.D50 / JM2.D51 / JM2.D52IN
DCDCINJM2.A57 / JM2.A58 / JM2.A59 / JM2.A60 / JM2.B57 / JM2.B58 / JM2.B59 / JM2.B60 / JM2.C57 / JM2.C58 / JM2.C59 / JM2.C60 / JM2.D57 / JM2.D58 / JM2.D59 / JM2.D60 / IN
PS_BATTJM2.D37IN
DDR_1V2JM2.D47OUT
PS_1V8JM2.C34 / JM2.D34 / JM3.A56 / JM3.B56 / JM3.C56 / JM3.D56OUT
PLL_3V3JM3.A55IN
GT_DCDCJM3.A59 / JM3.A60 / JM3.B59 / JM3.B60 / JM3.C59 / JM3.C60 / JM3.D59 / JM3.D60 /IN
VCCO_48JM3.C7 / JM3.C8 / JM3.D8 / JM3.D9IN
VCCO_47JM3.C19 / JM3.C20 / JM3.D20 / JM3.D21IN
VCCO_64JM4.B21 / JM4.B39IN
VREF_64JM4.B30IN
VCCO_65JM4.C21 / JM4.C39IN
VREF_65JM4.C30IN

1) Direction:

    • IN: Input from the point of view of this board.
    • OUT: Output from the point of view of this board.
Module power rails.

Recommended Power up Sequencing


SequenceNet nameRecommended Voltage RangePull-up/downDescriptionNotes
















































Baseboard Design Hints

Board to Board Connectors

Technical Specifications

Absolute Maximum Ratings *)

Power Rail Name/ Schematic NameDescriptionMinMaxUnit




V




V




V




V




V




V




V




V




°C
PS absolute maximum ratings

*) Stresses beyond those listed under TE0818 TRM (more or less equal to TE0808 but other connectors) may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these
   or any other conditions beyond those indicated under TE0818 TRM (more or less equal to TE0808 but other connectors). Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

This TRM is generic for all variants. Temperature range can be differ depending on the assembly version.  Voltage range is mostly the same during variants (exceptions are possible, depending on custom request)

Operating temperature range depends also on customer design and cooling solution. Please contact us for options.

  • Variants of modules are described here: Article Number Information
  • Modules with commercial temperature grade are equipped with components that cover at least the range of 0°C to 75°C
  • Modules with extended temperature grade are equipped with components that cover at least the range of 0°C to 85°C
  • Modules with industrial temperature grade are equipped with components that cover at least the range of -40°C to 85°C
  • The actual operating temperature range will depend on the FPGA / SoC design / usage and cooling and other variables.


ParameterMinMaxUnitsReference Document



VSee ???? datasheets.



VSee  ???? datasheet.



VSee  ???? datasheet.



VSee  ???? datasheet.



VSee  ???? datasheet.



VSee  ???? datasheet.



VSee  ???? datasheet.



°CSee  ???? datasheet.
Recommended operating conditions.


Physical Dimensions

  • Module size: ?? mm × ?? mm.  Please download the assembly diagram for exact numbers.

  • Mating height with standard connectors: ? mm.

PCB thickness: ?? mm.

Create DrawIO object here: Attention if you copy from other page, objects are only linked.

Physical Dimension

Currently Offered Variants 

Trenz shop TEXXXX overview page
English pageGerman page
Trenz Electronic Shop Overview

Revision History

Hardware Revision History

Create DrawIO object here: Attention if you copy from other page, objects are only linked.

Board hardware revision number.


DateRevisionChangesDocumentation Link




Hardware Revision History

Hardware revision number can be found on the PCB board together with the module model number separated by the dash.

Document Change History

DateRevisionContributorDescription

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy244.$Proxy3578#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy244.$Proxy3578#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy244.$Proxy3578#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]

  • <add TRM change list here>

--

all

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy244.$Proxy3578#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]

  • --
Document change history.

Disclaimer

Data Privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

Document Warranty

The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.


Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy244.$Proxy3578#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]


Table of contents


  • No labels