You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 56 Next »

Table of Contents

Overview

 

The Trenz Electronic TE0715 is an industrial-grade SoM (System on Module) based on Xilinx Zynq-7000 SoC (XC7Z015 or XC7Z030) with 1GB of DDR3 SDRAM, 32MB of SPI flash memory, gigabit Ethernet PHY transceiver, a USB PHY transceiver and powerful switching-mode power supplies for all on-board voltages. A large number of configurable I/Os is provided via rugged high-speed stacking strips.

Block Diagram

Main Components

 

  • 1. Xilinx Zynq-7000 All Programmable SoC, U5
  • 2. System Controller CPLD, U26
  • 3. Programmable Quad Clock Generator , U10
  • 4. 10/100/1000 Mbps Ethernet PHY, U7
  • 5. 4 Gbit DDR3L SDRAM (1.35 V), U12 and U13
  • 6. Hi-Speed USB 2.0 ULPI transceiver, U6
  • 7a. B2B connector Samtec Razor Beam™ LSHM-150, JM1
  • 7b. B2B connector Samtec Razor Beam™ LSHM-150, JM2
  • 7c. B2B connector Samtec Razor Beam™ LSHM-130, JM3
  • 8. 32-MByte Quad SPI Flash memory, U14
  • 9. Low power RTC With Battery Backed SRAM, U16
  • 10. 4A PowerSoC DC-DC Converter, U1
  • 11. Green LED (DONE), D2
  • 12. Red LED (SC), D3
  • 13. Green LED (MIO7), D4
  • 14. 2-Bit Bidirectional 1-MHz I2C Bus Voltage-Level Translator, U20

Key Features

  • Industrial-grade Xilinx Zynq-7000 (XC7Z015, XC7Z030) SoM

  • Rugged for shock and high vibration
  • 2 × ARM Cortex-A9
  • 10/100/1000 Mbps Ethernet transceiver PHY
  • MAC address EEPROM
  • 32-Bit wide 1GB DDR3 SDRAM
  • 32 MByte QSPI flash memory
  • Programmable clock generator
    • Transceiver clock (default 125 MHz)
  • Plug-on module with 2 × 100-pin and 1 × 60-pin high-speed hermaphroditic strips
  • 132 FPGA I/Os (65 LVDS pairs possible) and 14 PS MIO available on B2B connectors
  • 4 GTP/GTX (high-performance transceiver) lanes
    • GTP/GTX (high-performance transceiver) clock input
  • USB 2.0 high-speed ULPI transceiver
  • On-board high-efficiency DC-DC converters
    • 4.0 A x 1.0 V power rail
    • 1.5 A x 1.5 V power rail
    • 1.5 A x 1.8 V power rail
  • System management
  • eFUSE bit-stream encryption
  • AES bit-stream encryption
  • Temperature compensated RTC (real-time clock)
  • User LED
  • Evenly-spread supply pins for good signal integrity

Additional assembly options are available for cost or performance optimization upon request.

Initial Delivery State

Storage device name

Content

Notes

24AA025E48 EEPROM

User content not programmed

Valid MAC Address from manufacturer.

SPI Flash OTP Area

Empty, not programmed

Except serial number programmed by flash vendor.

SPI Flash Quad Enable bit

Programmed

-

SPI Flash main array

Demo design

-

eFUSE USER

Not programmed

-

eFUSE Security

Not programmed

-
Si5338 OTP NVMDefault settings pre programmedOTP not reprogrammable after delivery from factory

Signals, Interfaces and Pins

Board to Board (B2B) I/Os

I/O signals connected to the SoC's I/O bank and B2B connector: 

BankTypeB2B ConnectorI/O Signal CountVoltageNotes

13

HR

JM1

48

User

Supported voltages from 1.2V to 3.3V.

34

HR/HP

JM2

18

User

TE0715-xx-15 has no HP banks, banks 34 and 35 are HR banks on this module!

Banks 34 and 35 on TE0715-xx-30 are HP banks and  support voltages from 1.2V to 1.8V.

35

HR/HP

JM2

50

User

As above.

34

HR/HP

JM3

16

User

As above.

500

MIO

JM1

8

3.3V

-

501

MIO

JM1

6

1.8V

-

112

GT

JM3

4 lanes

N/A

-

112

GT CLK

JM3

1 differential input

N/A

NB! AC coupling capacitors on baseboard required.

For detailed information about the pin out, please refer to the Pin-out Table. 

JTAG Interface

JTAG access to the Xilinx Zynq-7000 is provided through B2B connector JM2. 

JTAG Signal

B2B Connector Pin

TMSJM2-93
TDIJM2-95
TDOJM2-97
TCKJM2-99
JTAGEN pin in B2B connector JM1 should be kept low or grounded for normal operation.

System Controller I/O Pins

Special purpose pins are connected to System Controller CPLD and have following default configuration:

Pin NameModeFunctionDefault Configuration
EN1InputPower Enable

No hard wired function on PCB, when forced low pulls POR_B low to

emulate power on reset.

PGOODOutputPower GoodActive high when all on-module power supplies are working properly.
NOSEQ--No function.
RESINInputReset

Active low reset, gated to POR_B.

JTAGENInputJTAG SelectLow for normal operation.

LEDs

LEDColorConnected toDescription and Notes

D2

Green

DONE

Reflects inverted DONE signal. ON when FPGA is not configured,

OFF as soon as PL is configured.

This LED will not operate if the SC can not power on the 3.3V output

rail that also powers the 3.3V circuitry on the module.

D3

Red

SC

System main status LED.

D4

Green

MIO7

User controlled, default OFF (when PS7 has not been booted).

Default MIO Mapping

MIOFunctionB2B PinNotes MIOFunctionB2B PinNotes
0GPIOJM1-87B2B 16..27ETH0-RGMII
1QSPI0-SPI Flash-CS 28..39USB0-ULPI
2QSPI0-SPI Flash-DQ0 40SDIO0JM1-27B2B
3QSPI0-SPI Flash-DQ1 41SDIO0JM1-25B2B
4QSPI0-SPI Flash-DQ2 42SDIO0JM1-23B2B
5QSPI0-SPI Flash-DQ3 43SDIO0JM1-21B2B
6QSPI0-SPI Flash-SCK 44SDIO0JM1-19B2B
7GPIO-Green LED D4 45SDIO0JM1-17B2B
8QSPI0-SPI Flash-SCKFB 46GPIO-

Ethernet PHY LED2

INTn Signal.

9 JM1-91B2B 47GPIO-RTC Interrupt
10 JM1-95B2B 48I2C1-SCL on-board I2C
11 JM1-93B2B 49I2C1-SDA on-board I2C
12 JM1-99B2B 50GPIO-ETH0 Reset
13 JM1-97B2B 51GPIO-USB Reset
14UART0JM1-92B2B 52ETH0-MDC
15UART0JM1-85B2B 53ETH0-MDIO

Gigabit Ethernet

On board Gigabit Ethernet PHY is provided with Marvell Alaska 88E1512 IC. The Ethernet PHY RGMII Interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. SGMII (SFP copper or fiber) can be used directly with the Ethernet PHY, as the SGMII pins are available on the B2B connector JM3. The reference clock input of the PHY is supplied from an on-board 25MHz oscillator (U9), the 125MHz output clock is connected to IN5 of the PLL chip (U10).

Ethernet PHY connection

PHY PinZYNQ PSZYNQ PLNotes
MDC/MDIOMIO52, MIO53--
LED0-J3Can be routed via PL to any free PL I/O pin in B2B connector.
LED1-K8

Can be routed via PL to any free PL I/O pin in B2B connector.

This LED is connected to PL via level-shifter implemented in

system controller CPLD.

LED2/InterruptMIO46--
CONFIG--

By default the PHY address is strapped to 0x00, alternate

configuration is possible.

RESETnMIO50--
RGMIIMIO16..MIO27--
SGMII--on B2B.
MDI--on B2B.

USB Interface

USB PHY is provided by USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0. The I/O Voltage is fixed at 1.8V. The reference clock input of the PHY is supplied from an on-board 25 MHz oscillator (U15).

USB PHY connection

PHY PinZYNQ PinB2B NameNotes
ULPIMIO28..39-Zynq USB0 MIO pins are connected to the PHY.
REFCLK--52MHz from on board oscillator (U15).
REFSEL[0..2]--Reference clock frequency select, all set to GND selects 52MHz.
RESETBMIO51-Active low reset.
CLKOUTMIO36-Connected to 1.8V, selects reference clock operation mode.
DP, DM-OTG_D_P, OTG_D_NUSB data lines.
CPEN-VBUS_V_ENExternal USB power switch active high enable signal.
VBUS-USB_VBUSConnect to USB VBUS via a series of resistors, see reference schematics.
ID-OTG_IDFor an A-Device connect to ground, for a B-Device left floating.

The schematics for the USB connector and required components is different depending on the USB usage. USB standard A or B connectors can be used for Host or Device modes. A Mini USB connector can be used for USB Device mode. A USB Micro connector can be used for Device mode, OTG Mode or Host Mode.

I2C Interface

On-board I2C devices are connected to MIO48 and MIO49 which are configured as I2C1 by default. I2C addresses for on-board devices are listed in the table below:

I2C DeviceI2C AddressNotes
EEPROM0x50 
RTC0x6F 
Battery backed RAM0x57Integrated into RTC.

PLL

0x70 

Boot Modes

By default the TE-0715 supports QSPI and SD Card boot modes which is controlled by the MODE input signal from the B2B connector.

MODE Signal State

Boot Mode

High or open

SD Card

Low or ground

QSPI

On-board Peripherals

Processing System (PS) Peripherals

NameICIDPS7MIONotes
SPI FlashS25FL256SAGBHI20U14QSPI0MIO1..MIO6 
EEPROM I2C24AA025E48U19I2C1MIO48, MIO49EEPROM for MAC Address.
RTCISL2020U16I2C1MIO48, MIO49

Temperature compensated RTC.

RTC InterruptISL2020U16GPIOMIO47Real Time Clock Interrupt.
Clock PLLSi5338U10I2C1MIO48, MIO49Low jitter phase locked loop.
LED-D4GPIOMIO7 
USBUSB3320U6USB0MIO28..MIO39 
USB Reset--GPIOMIO51 
Ethernet88E1512U7ETH0MIO16..MIO27 
Ethernet Reset--GPIOMIO50 

Clocking

ClockFrequencyICFPGANotes

PS CLK

33.3333 MHz

U11

PS_CLK

PS subsystem main clock.

ETH PHY reference

25 MHz

U9

-

-

USB PHY reference

52 MHz

U15

-

-

PLL reference

25 MHz

U18

-

-

GT REFCLK0

-

B2B

U9/V9

Externally supplied from baseboard.

GT REFCLK1

125 MHz

U10 Si5338

U5/V5

Default clock is 125 MHz.

RTC - Real Time Clock

An temperature compensated Intersil ISL12020M is used for Real Time Clock (U16). Battery voltage must be supplied to the module from the main board. Battery backed registers can be accessed over I2C bus at slave address of 0x6F. General purpose RAM is at I2C slave address 0x57. RTC IC is supported by Linux so it can be used as hwclock device.

PLL - Phase-Locked Loop

There is a Silicon Labs I2C programmable clock generator Si5338A (U10) chip on the module. It's output frequencies can be programmed using the I2C bus address 0x70.

PLL connection

I/ODefault FrequencyNotes

IN1/IN2

Externally supplied

Needs decoupling on base board.

IN3

25MHz

Fixed input clock.

IN4

-

-

IN5/IN6

125MHz

Ethernet PHY output clock.

CLK0

-

Not used, disabled.

CLK1

-

Not used, disabled.

CLK2 A/B

125MHz

MGT reference clock 1.

CLK3A

Bank 34 clock input, default disabled, User clock.

CLK3B

-

Not used, disabled.

MAC Address EEPROM

A Microchip 24AA025E48 EEPROM (U19) is used which contains a globally unique 48-bit node address, that is compatible with EUI-48(TM) and EUI-64(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. It is accessible through the I2C slave address 0x50.

Power and Power-On Sequence

TE0715-xx-30 has several HP banks on B2B connectors. Those banks have maximum voltage tolerance of 1.8V. Please check special instructions for the baseboard to be used with TE0715-xx-30.

Power Supply

Power supply with minimum current capability of 3A for system startup is recommended.

Power Consumption

Power Input PinMax Current
VINTBD*
3.3VINTBD*

 * TBD - To Be Determined soon with reference design setup.

Lowest power consumption is achieved when powering the module from single 3.3V supply. When using split 3.3V/5V supplies the power consumption (and heat dissipation) will rise due to the DC-DC converter efficiency (it decreases when VIN/VOUT ratio rises). Typical module power consumption is between 2-3W.

Power-On Sequence

For highest efficiency of on board DC/DC regulators, it is recommended to use same 3.3V power source for both VIN and 3.3VIN power rails. Although VIN and 3.3VIN can be powered up in any order, it is recommended to power them up simultaneously.

It is important that all baseboard I/Os are 3-stated at power-on until System Controller sets PGOOD signal high (B2B connector JM1, pin 30), or 3.3V is present on B2B connector JM2 pins 10 and 12, meaning that all on-module voltages have become stable and module is properly powered up.

See Xilinx datasheet DS187 (for XC7Z015) or DS191 (for XC7Z030) for additional information. User should also check related baseboard documentation when choosing baseboard design for TE0715 module.

Power Rails

Voltages on B2B

Connectors

B2B JM1 Pin

B2B JM2-Pin

Input/

Output

Note
VIN1, 3, 52, 4, 6, 8InputSupply voltage.
3.3VIN13, 15-InputSupply voltage.
VCCIO139, 11-InputHigh range bank voltage.
VCCIO34-5Input

TE0715-xx-15: high range bank voltage.

TE0715-xx-30: high performance bank voltage.
VCCIO35-7, 9Input

TE0715-xx-15: high range bank voltage.

TE0715-xx-30: high performance bank voltage.
VBAT_IN79-InputRTC battery-buffer supply voltage.
3.3V-10, 12OutputInternal 3.3V voltage level.
1.8V39-OutputInternal 1.8V voltage level.
DDR_PWR-19OutputInternal 1.5V or 1.35V voltage level, depends on revision.
VREF_JTAG 91OutputJTAG reference voltage (3.3V).

Bank Voltages

Bank          

Schematic Name

Voltage

TE0715-xx-15        

TE0715-xx-30           

500VCCO_MIO0_500  3.3V--
501VCCO_MIO1_501  1.8V--
502VCCO_DDR_502   1.5V--
0 ConfigVCCO_03.3V--
13 HRVCCO_13UserHR: 1.2V to 3.3V
HR: 1.2V to 3.3V
34 HR/HPVCCO_34UserHR: 1.2V to 3.3V
HP: 1.2V to 1.8V
35 HR/HPVCCO_35UserHR: 1.2V to 3.3V
HP: 1.2V to 1.8V

Board to Board Connectors

Unable to render {include} The included page could not be found.

Technical Specifications

Absolute Maximum Ratings

Parameter

MinMax

Units

Notes

VIN supply voltage

-0.3

6.0

V

-

3.3VIN supply voltage

-0.4

3.6

V

-
VBAT supply voltage-16.0V-
PL IO bank supply voltage for HR I/O banks (VCCO)-0.53.6V-

PL IO bank supply voltage for HP I/O banks (VCCO)

-0.52.0VTE0715-xx-15 does not have HP banks.
I/O input voltage for HR I/O banks-0.4VCCO_X+0.55V-
I/O input voltage for HP I/O banks-0.55VCCO_X+0.55VTE0715-xx-15 does not have HP banks.
GT receiver (RXP/RXN) and transmitter (TXP/TXN)-0.51.26V-

Voltage on module JTAG pins

-0.4

VCCO_0+0.55

V

VCCO_0 is 3.3V nominal.

Storage temperature

-40

+85

°C

-
Storage temperature without the ISL12020MIRZ-55+100°C-
Assembly variants for higher storage temperature range are available on request.
Please check Xilinx datasheet DS187 (for XC7Z015) or DS191 (for XC7Z030) for complete list of absolute maximum and recommended operating ratings.

Recommended Operating Conditions

ParameterMinMaxUnitsNotesReference Document
VIN supply voltage2.55.5V  
3.3VIN supply voltage3.1353.465V  
VBAT_IN supply voltage2.75.5V  

PL I/O bank supply voltage for HR

I/O banks (VCCO)

1.143.465V Xilinx datasheet DS191

PL I/O bank supply voltage for HP

I/O banks (VCCO)

1.141.89V

TE0715-xx-15 does not have

HP banks

Xilinx datasheet DS191
I/O input voltage for HR I/O banks(*)(*)V(*) Check datasheet

Xilinx datasheet DS191

or DS187

I/O input voltage for HP I/O banks(*)(*)V

TE0715-xx-15 does not have

HP banks

(*) Check datasheet

Xilinx datasheet DS191
Voltage on Module JTAG pins3.1353.465VVCCO_0 is 3.3 V nominal 

Physical Dimensions

  • Module size: 50 mm × 40 mm.  Please download the assembly diagram for exact numbers

  • Mating height with standard connectors: 8mm

  • PCB thickness: 1.6mm

  • Highest part on PCB: approx. 2.5mm. Please download the step model for exact numbers

 All dimensions are given in millimeters.

 

Operating Temperature Ranges

Commercial grade: 0°C to +70°C.

Industrial grade: -40°C to +85°C.

The module operating temperature range depends also on customer design and cooling solution. Please contact us for options.

Weight

26 g - Plain module

8.8 g - Set of bolts and nuts

Revision History

Hardware Revision History

DateRevision

Notes

Link to PCNDocumentation Link
2016-06-2104Second production releaseClick to see PCNTE0715-04
-03First production release TE0715-03
-02Prototypes TE0715-02
-

01

Prototypes

  

Hardware revision number is printed on the PCB board together with the module model number separated by the dash.


Document Change History

Date

Revision

Contributors

Description

2017-01-25
Jan KumannNew block diagram.
2017-01-14

V50

Jan Kumann

Product revision 04 images added.

Formatting changes and small corrections.

2016-11-15

V45

Thorsten Trenz
Added B2B Connector section.
2016-10-18
V40

Ali Naseri

Added table "power rails".
2016-06-28
V38

 

Thorsten Trenz, Emmanuel Vassilakis, Jan Kumann

New overall document layout with shorter table of contents.

Revision 01 PCB pictures replaced with the revision 03 ones.

Fixed link to Master Pin-out Table.

New default MIO mapping table design.

Revised Power-on section.

Added links to related Xilinx online documents.

Physical dimensions pictures revised.

Revision number picture with explanation added.

2016-04-27V33

Thorsten Trenz, Emmanuel Vassilakis

Added table "Recommended Operating Conditions".

Storage Temperature edited.

2016-03-31V10

Philipp Bernhardt, Antti Lukats

Initial version.

Disclaimer

Data Privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

Document Warranty

The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.


Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy244.$Proxy3589#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]

  • No labels