Table of contents
Overview
Zynq PS Design with Linux Example.
Key Features
- PetaLinux
- SD
- ETH
- USB
- I2C
- RTC
- Special FSBL for QSPI programming
Revision History
Date | Vivado | Project Built | Authors | Description |
---|---|---|---|---|
2018-02-16 | 2017.4 | te0726-test_board-vivado_2017.4-build_06_20180216205357.zip te0726-test_board_noprebuilt-vivado_2017.4-build_06_20180216205410.zip | John Hartfiel | correction PS REFCLK for 01 variant |
2018-01-31 | 2017.4 | te0726-test_board-vivado_2017.4-build_05_20180131115412.zip te0726-test_board_noprebuilt-vivado_2017.4-build_05_20180131115451.zip | John Hartfiel | initial release 2017.4 |
Release Notes and Know Issues
Issues | Description | Workaround | To be fixed version |
---|---|---|---|
No known issues | --- | --- | --- |
Requirements
Software
Software | Version | Note |
---|---|---|
Vivado | 2017.4 | needed |
SDK | 2017.4 | needed |
PetaLinux | 2017.4 | needed |
Hardware
Basic description of TE Board Part Files is available on TE Board Part Files.
Complete List is available on <design name>/board_files/*_board_files.csv
Design supports following modules:
Module Model | Board Part Short Name | PCB Revision Support | DDR | QSPI Flash | Others | Notes |
---|---|---|---|---|---|---|
te0726-01 | 01 | REV01 | 128MB LPDDR2 | 16MB | ||
te0726-03r | r | REV02, REV03 | 128MB DDR3L | 16MB | ||
te0726-03m | m | REV02, REV03 | 512MB DDR3L | 16MB | ||
te0726-03-07s-1c | 7s | REV03 | 512MB DDR3L | 16MB |
Design supports following carriers:
Carrier Model | Notes |
---|---|
--- |
Additional HW Requirements:
Additional Hardware | Notes |
---|---|
USB Cable | Connect to USB2 or better USB3 Hub for proper power supply over USB |
Content
For general structure and of the reference design, see Project Delivery
Design Sources
Type | Location | Notes |
---|---|---|
Vivado | <design name>/block_design <design name>/constraints <design name>/ip_lib | Vivado Project will be generated by TE Scripts |
SDK/HSI | <design name>/sw_lib | Additional Software Template for SDK/HSI and apps_list.csv with settings for HSI |
PetaLinux | <design name>/os/petalinux | PetaLinux template with current configuration |
Additional Sources
Type | Location | Notes |
---|---|---|
Prebuilt
File | File-Extension | Description |
---|---|---|
BIF-File | *.bif | File with description to generate Bin-File |
BIN-File | *.bin | Flash Configuration File with Boot-Image (Zynq-FPGAs) |
BIT-File | *.bit | FPGA (PL Part) Configuration File |
Diverse Reports | --- | Report files in different formats |
Hardware-Platform-Specification-Files | *.hdf | Exported Vivado Hardware Specification for SDK/HSI and PetaLinux |
LabTools Project-File | *.lpr | Vivado Labtools Project File |
OS-Image | *.ub | Image with Linux Kernel (On Petalinux optional with Devicetree and RAM-Disk) |
Software-Application-File | *.elf | Software Application for Zynq or MicroBlaze Processor Systems |
Download
Reference Design is only usable with the specified Vivado/SDK/PetaLinux/SDx version. Do never use different Versions of Xilinx Software for the same Project.
Reference Design is available on:
Design Flow
Reference Design is available with and without prebuilt files. It's recommended to use TE prebuilt files for first lunch.
Trenz Electronic provides a tcl based built environment based on Xilinx Design Flow.
See also:
The Trenz Electronic FPGA Reference Designs are TCL-script based project. Command files for execution will be generated with "_create_win_setup.cmd" on Windows OS and "_create_linux_setup.sh" on Linux OS.
TE Scripts are only needed to generate the vivado project, all other additional steps are optional and can also executed by Xilinx Vivado/SDK GUI. For currently Scripts limitations on Win and Linux OS see: Project Delivery Currently limitations of functionality
- _create_win_setup.cmd/_create_linux_setup.sh and follow instructions on shell:
- Press 0 and enter for minimum setup
- (optional Win OS) Generate Virtual Drive or use short directory for the reference design (for example x:\<design name>)
- Create Project
- Select correct device and Xilinx install path on "design_basic_settings.cmd" and create Vivado project with "vivado_create_project_guimode.cmd"
Note: Select correct one, see TE Board Part Files
- Select correct device and Xilinx install path on "design_basic_settings.cmd" and create Vivado project with "vivado_create_project_guimode.cmd"
- Create HDF and export to prebuilt folder
- Run on Vivado TCL: TE::hw_build_design -export_prebuilt
Note: Script generate design and export files into \prebuilt\hardware\<short dir>. Use GUI is the same, except file export to prebuilt folder
- Run on Vivado TCL: TE::hw_build_design -export_prebuilt
- Create Linux (uboot.elf and image.ub) with exported HDF
- HDF is exported to "prebuilt\hardware\<short name>"
Note: HW Export from Vivado GUI create another path as default workspace. - Create Linux images on VM, see PetaLinux KICKstart
- Use TE Template from /os/petalinux
Note: run init_config.sh before you start petalinux config. This will set correct temporary path variable.
- Use TE Template from /os/petalinux
- HDF is exported to "prebuilt\hardware\<short name>"
- Add Linux files (uboot.elf and image.ub) to prebuilt folder
- "prebuilt\os\petalinux\default" or "prebuilt\os\petalinux\<short name>"
Notes: Scripts select "prebuilt\os\petalinux\<short name>", if exist, otherwise "prebuilt\os\petalinux\default"
- "prebuilt\os\petalinux\default" or "prebuilt\os\petalinux\<short name>"
- Generate Programming Files with HSI/SDK
- Run on Vivado TCL: TE::sw_run_hsi
Note: Scripts generate applications and bootable files, which are defined in "sw_lib\apps_list.csv" - (alternative) Start SDK with Vivado GUI or start with TE Scripts on Vivado TCL: TE::sw_run_sdk
Note: See SDK Projects
- Run on Vivado TCL: TE::sw_run_hsi
Since Vivado 2017.4 FSBL is needed to program QSPI. (2017.2 works without FSBL). Xilinx mini-uboot starts with this FSBL configuration but needs QSPI FB CLK enabled on PS. On TE0726, this MIO is used for UART, so special design is need to generate this FSBL.
This reference design contains a prebuilt FSBL for QSPI programming (zynqmp_fsbl_flash), so there is normally no need to regenerate this special FSBL. In case of generate this by yourself following steps are needed
- Create new default reference design
- Open PS and enable QSPI FB CLK
- Set UART to MIO 52 .. 53
- Create Bitfile
- Start SDK with with TE Scripts on Vivado TCL: TE::sw_run_sdk
- ON SDK use zynqmp_fsbl_flash template.
Important "zynqmp_fsbl_flash" FSBL can be only used on QSPI Flash Programming setup on Vivado or SDK Menu!
Launch
Programming
Check Module and Carrier TRMs for proper HW configuration before you try any design.
Xilinx documentation for programming and debugging: Vivado/SDK/SDSoC-Xilinx Software Programming and Debugging
QSPI
- Connect JTAG and power on carrier with module
- Open Vivado Project with "vivado_open_existing_project_guimode.cmd" or if not created, create with "vivado_create_project_guimode.cmd"
- Type on Vivado TCL Console: TE::pr_program_flash_binfile -swapp u-boot
Note: To program with SDK/Vivado GUI, use special FSBL (zynqmp_fsbl_flash) on setup - Copy image.ub on SD-Card
- For correct prebuilt file location, see <design_name>/prebuilt/readme_file_location.txt
- Insert SD-Card
SD
Xilinx Zynq devices in CLG225 package do not support SD Card boot directly from ROM bootloader. Use QSPI for primary boot and SD for secondary boot (uboot)
JTAG
Not used on this Example.
Usage
- Prepare HW like described on section Programming
- Connect UART USB (most cases same as JTAG)
- Insert SD Card with image.ub
- Power On PCB
Note: 1. Zynq Boot ROM loads FSBL from QSPI into OCM, 2. FSBL loads U-boot from QSPI into DDR, 3. U-boot load Linux from SD into DDR
Linux
- Open Serial Console (e.g. putty)
- Speed: 115200
- COM Port: Win OS, see device manager, Linux OS see dmesg |grep tty (UART is *USB1)
- Linux Console:
Note: Wait until Linux boot finished For Linux Login use:- User Name: root
- Password: root
- You can use Linux shell now.
- I2C 1 Bus type: i2cdetect -y -r 1
- ETH0 works with udhcpc
- USB: insert USB device
System Design - Vivado
Block Design
PS Interfaces
Type | Note |
---|---|
DDR | --- |
QSPI | MIO |
USB0 | MIO, ETH over USB |
SD1 | MIO |
UART1 | MIO |
I2C1 | MIO |
GPIO | MIO |
USB RST | MIO |
TTC0..1 | MIO |
WDT | MIO |
Constrains
Basic module constrains
# # Common BITGEN related settings for TE0726 # set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design] set_property CONFIG_VOLTAGE 3.3 [current_design] set_property CFGBVS VCCO [current_design] set_property BITSTREAM.CONFIG.UNUSEDPIN PULLUP [current_design]
Design specific constrain
Software Design - SDK/HSI
For SDK project creation, follow instructions from:
Application
zynqmp_fsbl
Xilinx default FSBL
zynqmp_fsbl_flash
TE modified 2017.4 FSBL
Changes:
- Set FSBL Boot Mode to JTAG
- Disable Memory initialisation
U-Boot
U-Boot.elf is generated with PetaLinux. SDK/HSI is used to generate Boot.bin.
Hello TE0726
Hello World App in endless loop.
Software Design - PetaLinux
For PetaLinux installation and project creation, follow instructions from:
Config
No changes.
U-Boot
No changes.
Device Tree
/include/ "system-conf.dtsi" / { }; /* USB PHY */ /{ usb_phy0: usb_phy@0 { compatible = "ulpi-phy"; #phy-cells = <0>; reg = <0xe0002000 0x1000>; view-port = <0x0170>; drv-vbus; }; }; &usb0 { dr_mode = "host"; //dr_mode = "peripheral"; usb-phy = <&usb_phy0>; }; /* I2C1 */ &i2c1 { #address-cells = <1>; #size-cells = <0>; i2cmux0: i2cmux@70 { compatible = "nxp,pca9544"; #address-cells = <1>; #size-cells = <0>; reg = <0x70>; i2c1@0 { #address-cells = <1>; #size-cells = <0>; reg = <0>; id_eeprom@50 { compatible = "atmel,24c32"; reg = <0x50>; }; }; i2c1@1 { // Display Interface Connector #address-cells = <1>; #size-cells = <0>; reg = <1>; }; i2c1@2 { // HDMI Interface Connector #address-cells = <1>; #size-cells = <0>; reg = <2>; }; i2c1@3 { // Camera Interface Connector #address-cells = <1>; #size-cells = <0>; reg = <3>; }; }; };
Kernel
Activate:
- CONFIG_XILINX_GMII2RGMII
- CONFIG_USB_USBNET
- CONFIG_USB_NET_SMSC95XX
- CONFIG_USBIP_CORE
Rootfs
Activate:
- i2c-tools
Applications
startup
Script App to load init.sh from SD Card if available.
See: \os\petalinux\project-spec\meta-user\recipes-apps\startup\files
Additional Software
No additional software is needed
Appx. A: Change History and Legal Notices
Document Change History
To get content of older revision got to "Change History" of this page and select older document revision number.
Date | Document Revision | Authors | Description |
---|---|---|---|
| |||
2018-02-09 | v.5 | John Hartfiel |
|
2018-01-31 | v.1 |
| |
All |
Legal Notices
Data Privacy
Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy
Document Warranty
The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.
Limitation of Liability
In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.
Copyright Notice
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.
Technology Licenses
The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.
Environmental Protection
To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.
REACH, RoHS and WEEE
REACH
Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).
RoHS
Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.
WEEE
Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).
Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.
Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.