Skip to end of metadata
Go to start of metadata

Table of Contents

Overview


The Trenz Electronic TE0726 "ZynqBerry" is a industrial-grade Raspberry Pi form-factor compatible FPGA SoM (System on Module) based on Xilinx Zynq-7010 SoC (XC7Z010 System on Chip) with up to 512 MByte DDR3L SDRAM, 4 x USB 2.0 ports, 10/100 Mbit Ethernet port and 16 MByte Flash memory.

Key Features

  • Xilinx Zynq XC7Z010-1CLG225C
    - REV3: DDR3L SDRAM (512 MByte)
    - REV2: DDR3L SDRAM (128 - 512 MByte)
    - REV1: LPDDR2 SDRAM (64 MByte)
  • 16 MByte Flash
  • Raspberry Pi Model 2 form factor
  • LAN9514 USB hub with 10/100 Ethernet
    - 4 x USB 2.0 with power switches
    - 10/100 Mbit Ethernet RJ45
  • Micro SD card slot with card-detect switch
  • HDMI connector
  • DSI connector (Display)
  • CSI-2 connector (Camera)
  • HAT header with 26 I/Os
  • Micro-USB
    - power input
    - USB UART
    - JTAG ARM- and FPGA-Debug
  • 3.5 mm stereo audio socket (PWM audio output only)

Block Diagram

Main Components

  1. Xilinx Zynq XC7Z010 All Programmable SoC, U1
  2. 512 MByte DDR3L SDRAM, U8
  3. Lattice Semiconductor MachXO2 System Controller CPLD, U11
  4. Dual high-speed USB to multipurpose UART/FIFO, U3
  5. 2 Kbit Microwire compatible serial EEPROM, U6
  6. Low-power, programmable oscillator @ 12.000000 MHz, U7
  7. Ultra-low capacitance double rail-to-rail ESD protection diode ,U4
  8. Micro-USB 2.0 B receptacle, J1
  9. Green LED (GLED), D1
  10. Red LED (RLED), D2
  11. DSI LCD connector, J4
  12. JTAGENB, when low, TDO, TDI, TMS and TCK function as GPIOs, J15
  13. Fiducial mark PM2
  14. External I2C bus with interrupt signal and power line, J2
  15. Low-voltage 4-channel I2C and SMBus multiplexer with interrupt logic, U10
  16. 2x20 pin 2.54 GPIO header, J8
  17. 128 Mbit (16 MByte) 3.0V SPI Flash memory, U5

  18. USB 2.0 Hub and 10/100 Ethernet controller, U2
  19. External reset
  20. 2 Kbit Microwire compatible serial EEPROM, U9
  21. PUDC of Zynq, active low enables  internal pull-ups during configuration on all SelectIO pins
  22. Dual USB A receptacle, J12. Also fiducial mark PM1
  23. Dual USB A receptacle, J11
  24. Low power programmable oscillator @ 25.000000 MHz, U13
  25. Molex’s miniature traceability S/N pad for low-cost, unique product identification
  26. RJ-45 Ethernet connector with 10/100 integrated magnetics, J10. Also fiducial mark PM3
  27. 3.5mm RCA audio jack, J7
  28. 1A PowerSoC synchronous buck regulator with integrated inductor (3.3V), U20
  29. 1A PowerSoC synchronous buck regulator with integrated inductor (1.8V), U19
  30. ZIF FFC/FPC CSI-2 camera connector, J3
  31. HDMI connector, J6
  32. Common mode filter with ESD protection, D8

  33. Common mode filter with ESD protection, D9

  34. 1A PowerSoC synchronous buck regulator with integrated inductor (1.35V), U16
  35. Additional external +5V power supply connector, J5
  36. Highly integrated full featured hi-speed USB 2.0 ULPI transceiver, U18

  37. Low-power programmable oscillator @ 33.333333 MHz, U14
  38. Ultra-low supply current voltage monitor with optional watchdog, U22
  39. Fiducial mark PM4
  40. Micro SD memory card connector with detect switch, J9
  41. JTAG interface, TP1 (TDI), TP3 (TDO), TP5 (TCK), TP7 (TMS)
  42. 1A PowerSoC synchronous buck regulator with integrated inductor (1.0V), U17
  43. Fiducial mark PM6
  44. 0.5A dual channel current-limited power switch, U15
  45. 0.5A dual channel current-limited power switch, U21
  46. Fiducial mark PM5

Initial Delivery State

Up on delivery from Trenz Electronic System Controller CPLD is programmed with the standard firmware and FTDI FT2232H EEPROM contains pre-programmed Digilent license needed by Xilinx software tools for JTAG access, all other programmable devices are empty.

Signals, Interfaces and Pins

Camera Serial Interface (CSI-2)

The TE0726-03 module has CSI-2 specification compatible serial camera interface routed from Zynq SoC bank 34 to the connector J3.

FPGA BankZynq PinSignal NameConnected To
34M10CSI_D0_PCSI-2 camera connector J3
34M11CSI_D0_NCSI-2 camera connector J3
34P13CSI_D1_PCSI-2 camera connector J3
34P14CSI_D1_NCSI-2 camera connector J3
34N11CSI_C_PCSI-2 camera connector J3
34N12CSI_C_NCSI-2 camera connector J3

Display Serial Interface (DSI)

The TE0726-03 module has MIPI Alliance DSI specification compatible serial display interface routed from Zynq SoC bank 35 to the connector J4.

FPGA BankZynq PinSignal NameConnected To
35F13DSI_D0_R_NDSI display connector J4
35F14DSI_D0_R_PDSI display connector J4
35F12DSI_D1_R_NDSI display connector J4
35E13DSI_D1_R_PDSI display connector J4
35E11DSI_C_R_NDSI display connector J4
35E12DSI_C_R_PDSI display connector J4

See also section FPGA IO Banks Pin Mapping, pins DSI_XA and DSI_XB.

HDMI Interface

HDMI interface is routed from Zynq SoC bank 34 to the external connector J6 via EMI4192 ESD protector/EMI filters.

FPGA BankZynq PinSignal NameConnected To
 34K12CEC_BHDMI connector J6
34P8HDMI_TX0_NHDMI connector J6 via EMI filter/ESD protector
34P9HDMI_TX0_PHDMI connector J6 via EMI filter/ESD protector
34R10HDMI_TX1_NHDMI connector J6 via EMI filter/ESD protector
34P10HDMI_TX1_PHDMI connector J6 via EMI filter/ESD protector
34R11HDMI_TX2_NHDMI connector J6 via EMI filter/ESD protector
34P11HDMI_TX2_PHDMI connector J6 via EMI filter/ESD protector
34R7HDMI_TXC_NHDMI connector J6 via EMI filter/ESD protector
34R8HDMI_TXC_PHDMI connector J6 via EMI filter/ESD protector

Audio Output

Pulse-width modulated stereo audio output is routed from Zynq SoC bank 34 to external 3.5mm socket J7.

FPGA BankZynq PinSignal NameConnected To
34N7PWM_L3.5mm stereo socket J7
34N8PWM_R3.5mm stereo socket J7

SD Card Socket

Micro SD memory card connector J9 with detect switch is connected to the Zynq Soc PS MIO bank 500. See also section Default MIO Mapping.

FPGA IO Banks Pin Mapping

BankZynq PinNameConnected To
34G14PUDCJumper J14
35G15DSI_XASystem Controller CPLD, pin 16
35F15DSI_XBSystem Controller CPLD, pin 17

Header J8 Interface Mapping

26 PL IO  and 2 MIO IOs over I2C mux. All Bank IO voltages are 3.3V.

J8 PinNameZynq Pin
Zynq PinNameJ8 Pin
13.3V-
-5V2
3GPIO2K15
-5V4
5GPIO3J14
-GND6
7GPIO4H12
M12GPIO148
9GND-
N13GPIO1510
11GPIO17G11
H11GPIO1812
13GPIO27G12
-GND14
15GPIO22H13
J11GPIO2316
173.3V-
K11GPIO2418
19GPIO10H14
-GND20
21GPIO9J13
K13GPIO2522
23GPIO11J15
L15GPIO824
25GND-
L14GPIO726
27MIO49(ID_SDA via TCA9544APWR) 
 MIO48 (ID_SCL via TCA9544APWR )28
29GPIO5N14
-GND30
31GPIO6R15
M15GPIO1232
33GPIO13R13
-GND34
35GPIO19R12
L13GPIO1636
37GPIO26L12
M14GPIO2038
39GND-
P15GPIO2140


Default MIO Mapping

Bank 500 MIOs

MIO

FunctionNotes
0

MIO0_INT

Interrupt signal from I2C MUX.
1SPI0_CSSPI chip select.
2SPI0_DQ0/M0Bi-directional data line 0
3SPI0_DQ1/M1Bi-directional data line 1
4SPI0_DQ2/M2Bi-directional data line 2
5SPI0_DQ3/M3Bi-directional data line 3
6SPI0_SCKSPI clock.
7MIO7RESETB of USB3320 chip, U18
8MIO8System Controller CPLD pin 28
9MIO9System Controller CPLD pin 29
10SD_D0Serial data 0.
11SD_CMDCommand/Response.
12SD_CLKSerial clock.
13SD_D1Serial data 1.
14SD_D2Serial data 2.
15SD_D3Serial data 3.


Bank 501 MIOs

 MIOFunctionNotes
28OTG-DATA4ULPI bi-directional data bus.
29OTG-DIRData bus direction control signal.
30OTG-STPData throttle signal.
31OTG-NXTData stream stop.
32OTG-DATA0ULPI bi-directional data bus.
33OTG-DATA1ULPI bi-directional data bus.
34OTG-DATA2ULPI bi-directional data bus.
35OTG-DATA3ULPI bi-directional data bus.
36OTG-CLKULPI clock.
37OTG-DATA5ULPI bi-directional data bus.
38OTG-DATA6ULPI bi-directional data bus.
39OTG-DATA7ULPI bi-directional data bus.
48MUX_SCLI2C clock to I2C MUX.
49MUX_SDAI2C data to/from I2C MUX.
52MIO52System Controller CPLD pin 20
53MIO53System Controller CPLD pin 21

On-board LEDs

There are two LEDs on TE0726 module:

LED

Signal Name

Color

CPLD Pin

Notes

D1GLEDGreen5CPLD bank 3.

D2

RLED

Red

4

CPLD bank 3.

On-board Peripherals

System Controller CPLD

There is a System Controller CPLD chip LCMXO2-256HC from Lattice Semiconductor on-board. Refer to the TE0726 CPLD for more information.

Quad SPI Flash Memory

On-board QSPI flash memory (U5) on the TE0726 is provided by Cypress Semiconductor Serial NOR Flash Memory S25FL127SABMFV10 with 128 Mbit (16 MByte) storage capacity connected to the PS MIO bank (MIO1 ... MIO6) of the Zynq SoC. This non volatile memory is used to store initial FPGA configuration. Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All four SPI data lines are connected to the Zynq PS MIO-bank allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency used.

DDR3L SDRAM

The TE0726 SoM is equipped with one DDR3L-1600 SDRAM module with 1 GByte memory density. The SDRAM module is connected to the Zynq SoC's PS DDR controller with 16-bit data bus-width.

Clocking

Signal Name

Clock IC

Default Frequency

Destination IC

Pin

Notes

PS_CLKU14

33.333333 MHz

U1

C7

Zynq SoC system reference clock.
OSCIU7

12.000000 MHz

U3

3

FT2232H oscillator input.

CLK24MU224 MHz (see also REFSEL0 .. 2)U1826Reference input/output clock, see datasheet.
CLK25MU1325.000000 MHzU261External 25 MHz crystal input.

Hi-speed USB 2.0 and 10/100 Mbit Ethernet

The TE0726-03 has on-board SMSC LAN9514 controller featuring USB 2.0 hub and 10/100 Mbit Ethernet controller. USB hub has four downstream ports and one upstream port, fully compliant with Universal Serial Bus Specification Revision 2.0. HS (480 Mbps), FS (12 Mbps), and LS (1.5 Mbps) compatible. Upstream port is connected to the SMSC USB3320 hi-speed USB 2.0 ULPI transceiver which has full support for the optional On-The-Go (OTG) protocol.

High-Performance 10/100 Ethernet controller integrated into the same LAN9514 IC is fully compliant with IEEE802.3/802.3u standards, has integrated Ethernet MAC and PHY and supports both 10BASE-T and 100BASE-TX media.

256-byte EEPROM is connected via Microwire to the LAN9514 chip to store MAC address.

USB to JTAG/UART

The TE0726-03 has on-board high-speed USB 2.0 to UART/FIFO FT2232H controller from FTDI with external connection to micro-USB connector J1. There is also a 256-byte EEPROM wired to the FT2232H chip via Microwire bus which holds pre-programmed license code to support Xilinx programming tools.

 

Do not access the FT2232H EEPROM using FTDI programming tools, doing so will erase normally invisible user EEPROM content and invalidate stored Xilinx JTAG license. Without this license the on-board JTAG will not be accessible any more with any Xilinx tools. Software tools from FTDI website do not warn or ask for confirmation before erasing user EEPROM content.

4-Channel I2C Multiplexer

Zynq MIO pin 48 (MUX_SCL) and pin 49 (MUX_SDA) are connected to the 4-channel I2C multiplexer chip TCA9544A from Texas Instruments having I2C address of 0x70. It has four slave I2C channels which are routed as follows:

Channel

Connected To

0

Connector J8, pin 27 (ID_SDA) and pin 28 (ID_SCL).

1

DSI connector J4, pin 12 (DSI_SDA) and pin 11 (DSI_SCL).

2

HDMI connector J6, pin 16 (SDA) and pin 15 (SCL).

3

CSI-2 camera connector J3, pin 14 (CSI_SDA) and pin 13 (CSI_SCL).

Each slave channel of TCA9544A has its own dedicated interrupt signal in order for the master to detect an interrupt on the INT output pin that can result from any of the slave devices connected to the INT0-INT3 input pins.

Boot Process

Xilinx Zynq devices in CLG225 package do not support SD Card boot directly from ROM bootloader.

At least FSBL must be loaded from on-board SPI Flash, later all boot process can continue from SD Card. The easiest solution is to let FSBL to load bitstream and u-boot from SPI Flash, and then let u-boot to load Linux or any other OS image from SD Card.

Power and Power-On Sequence

Power Consumption

TE0726 needs one single power source via Micro USB2.0 B socket J1. However, it is recommended to not use any USB equipment below USB standard 2.0 to power the module. Also two-pin header J5 can be used as alternative to feed the 5V power supply voltage.

The maximum power consumption of a module mainly depends on the design which is running on the FPGA.

Xilinx provide a power estimator excel sheets to calculate power consumption. It's also possible to evaluate the power consumption of the developed design with Vivado. See also Trenz Electronic Wiki FAQ.

To power-up a module, 5.0V power supply with minimum current capability of 1A is recommended.

Power Distribution Dependencies

There is no specific power-on sequence, except to achieve minimum current draw, I/Os should be 3-stated at power-on.

There are following dependencies how the power supply voltage (5V nominal) is distributed to the on-board DC-DC converters.



Power Rails and Bank Voltages

Rail/Bank

Name

Voltage

Notes

VCCINTVCCINT1.0VPL internal supply voltage.
VCCPINTVCCPINT1.0VPS internal logic supply voltage.
VCCPLLVCCPLL1.8VPS PLL supply.
VCCBATT_0VCCBATT_01.8V 
VCCAUXVCCAUX1.8VPL auxiliary supply voltage.
VCCPAUXVCCPAUX1.8VPS auxiliary supply voltage.
VCCADC_0VCCADC_01.8V 
RSVDVCC1..3RSVDVCC1..33.3V 
0VCCO_03.3VConfiguration bank.

34

VCCO_34

3.3V

PL HR I/O bank.
35VCCO_35

1.8V

PL HR I/O bank.

500VCC_MIO_5003.3VPS MIO bank.
501VCC_MIO_5013.3VPS MIO bank.

502

VCCO_DDR_502

1.35V

DDR3L SDRAM power-supply.

Variants Currently in Production

 TE0726 VariantZynq SoC

RAM

FlashEthernetTemperature Range
TE0726-03RXC7Z010-1CLG225C128 MByte16 MByte-Commercial grade
TE0726-03MXC7Z010-1CLG225C512 MByte16 MByte10/100 MbitCommercial grade
TE0726-03-07S-1CXC7Z007S-1CLG225C512 MByte16 MByte10/100 MbitCommercial grade

Technical Specifications

 

If TE0726 module is powered by micro-USB connector J1 VBUS pin, which voltage level is controlled by supplying host according to the USB standards and should be 5V, there is not much user can control here if using standard USB equipment. However, user can also power the module by applying voltage to the J5 connector from other external sources. In both cases following maximum voltage ratings apply.

Absolute Maximum Ratings

Parameter

MinMax

Units

Notes

Power supply voltage

J1: USB_V_BUS, J5: 5V

4.75

5.25

V

-
VOUT of AP2152SG-13-VIN + 0.3VOutput voltage.
ILOAD of AP2152SG-13-Internal limitedAMaximum continuous load current.
PS MIO supply voltage-0.53.6VSee Xilinx DS187 datasheet
PS MIO input voltage-0.4VCCO_MIO + 0.55VVCCO_MIO0_500 and VCCO_MIO1_501.
PL HR I/O banks supply voltage-0.53.6VSee Xilinx DS187 datasheet
PL HR I/O banks input voltage-0.4VCCO + 0.55VSee Xilinx DS187 datasheet

Storage temperature

-55

+125

°C

-

See also the Xilinx datasheet DS187 for more information about absolute maximum ratings.

Recommended Operating Conditions

ParameterMinMaxUnitsNotes

Power supply voltage

J1: USB_V_BUS, J5: 5V

4.75

5.5VSee AP2152SG-13 datasheet.
IOUT of AP2152SG-130500mA-
PS MIO supply voltage1.713.465VSee Xilinx DS187 datasheet
PS MIO input voltage-0.2VCCO_MIO + 0.2VVCCO_MIO0_500 and VCCO_MIO1_501.
PL HR I/O banks supply voltage1.143.465VSee Xilinx DS187 datasheet
PL HR I/O banks input voltage-0.2VCCO + 0.2VSee Xilinx DS187 datasheet
Operating temperature070

°C

See LAN9514 datasheet.

The module operating temperature range depends on customer design and cooling solution. Please contact us for options.

Physical Dimensions

  • Module size: 40 mm × 30 mm.  Please download the assembly diagram for exact numbers.

  • Mating height with standard connectors: 8 mm

  • PCB thickness: 1.6 mm

  • Highest part on PCB: approximately 2.5 mm. Please download the step model for exact numbers.

All dimensions are shown in millimeters. Additional sketches, drawings and schematics can be found here.

Weight

VariantWeight in gNote
TE0726-03M---Plain module.
TE0726-03R---Plain module.
TE0726-03-07S-1C---Plain module.

Revision History

Hardware Revision History

DateRevision

Notes

PCN LinkDocumentation Link
2016-05-0603--TE0726-03
2016-01-2602--TE0726-02
 -

01

-

- 

Hardware revision number is printed on the PCB board next to the module model number separated by the dash.

 

Document Change History

Date

Revision

Contributors

Description

2017-11-10
John Hartfiel
  • rework J8 header
2017-11-10v.51Ali Naseri
  • Updated Power section
  • added Power-Distribution diagram
2017-05-30

v.40

Jan Kumann
  • Absolute maximum ratings
  • Layout redesign
  • Wiki link fixed
  • SoC model removed from BD

2017-05-24

V1

Jan Kumann

  • Initial version.

Disclaimer

Data Privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

Document Warranty

The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.


  • No labels