Table of contents
Overview
Zynq PS Design with installed python3 and Jupyter Notebook.
Refer to http://trenz.org/te0726-info for the current online version of this manual and other available documentation.
Key Features
- Vitis/Vivado 2019.2
- RPI Camera 1.3 or 2.1
- HDMI
- PetaLinux
- (optional) Linux Ubuntu 18.04 or RAMDisk as Rootfs
- Python3
- Jupyter Notebook
- SD
- ETH
- USB
- I2C
- Special FSBL for QSPI programming
Revision History
Date | Vivado | Project Built | Authors | Description |
---|---|---|---|---|
2020-05-28 | 2019.2 | TE0726-zynqberrydemo4-vivado_2019.2-build_12_20200528081042.zip | Mohsen Chamanbaz |
|
Release Notes and Know Issues
Issues | Description | Workaround | To be fixed version |
---|---|---|---|
--- | --- | --- | --- |
Requirements
Software
Software | Version | Note |
---|---|---|
Vitis | 2019.2 | needed,Vivado is included into Vitis installation |
PetaLinux | 2019.2 | needed |
Hardware
Basic description of TE Board Part Files is available on TE Board Part Files.
Complete List is available on <design name>/board_files/*_board_files.csv
Design supports following modules:
Module Model | Board Part Short Name | PCB Revision Support | DDR | QSPI Flash | Others | Notes |
---|---|---|---|---|---|---|
01 | REV01 | 64MB LPDDR2 | 16MB | not included, user modifications are needed | ||
r | REV02, REV03 | 128MB DDR3L | 16MB | not included, user modifications are needed | ||
te0726-03m | m | REV02, REV03 | 512MB DDR3L | 16MB | ||
te0726-03-07s-1c | 7s | REV03 | 512MB DDR3L | 16MB |
Design supports following carriers:
Carrier Model | Notes |
---|---|
--- |
Additional HW Requirements:
Additional Hardware | Notes |
---|---|
USB Power | Use USB2.0 or higher for power supply via USB |
USB Cable | Connect to USB2 or better USB3 Hub for proper power supply over USB |
Monitor (optional) | DELL Model Number: U2412Mc |
HDMI Cable (optional) | -- |
Content
For general structure and of the reference design, see Project Delivery - AMD devices
Design Sources
Type | Location | Notes |
---|---|---|
Vivado | <design name>/block_design <design name>/constraints <design name>/ip_lib | Vivado Project will be generated by TE Scripts |
Vitis | <design name>/sw_lib | Additional Software Template for Vitis and apps_list.csv with settings automatically for Vitis app generation |
PetaLinux | <design name>/os/petalinux | PetaLinux template with current configuration |
Additional Sources
Type | Location | Notes |
---|---|---|
-- | -- | --- |
Prebuilt
File | File-Extension | Description |
---|---|---|
BIF-File | *.bif | File with description to generate Bin-File |
BIN-File | *.bin | Flash Configuration File with Boot-Image (Zynq-FPGAs) |
BIT-File | *.bit | FPGA (PL Part) Configuration File |
Ubuntu SD-Image | *.img | Debian Image for SD-Card |
Diverse Reports | --- | Report files in different formats |
Hardware-Platform-Specification-Files | *.xsa | Exported Vivado Hardware Specification for Vitis and PetaLinux |
OS-Image | *.ub | Image with Linux Kernel (On Petalinux optional with Devicetree and RAM-Disk) |
Software-Application-File | *.elf | Software Application for Zynq or MicroBlaze Processor Systems |
Jupyter Notebook | *.ipynb | A notebook document used by Jupyter Notebook |
Python | *.py | A program file or script written in Python |
Download
Reference Design is only usable with the specified Vivado/SDK/PetaLinux/SDx version. Do never use different Versions of Xilinx Software for the same Project.
Reference Design is available on:
Design Flow
Reference Design is available with and without prebuilt files. It's recommended to use TE prebuilt files for first lunch.
Trenz Electronic provides a tcl based built environment based on Xilinx Design Flow.
See also:
- AMD Development Tools#XilinxSoftware-BasicUserGuides
- Vivado Projects - TE Reference Design
- Project Delivery.
The Trenz Electronic FPGA Reference Designs are TCL-script based project. Command files for execution will be generated with "_create_win_setup.cmd" on Windows OS and "_create_linux_setup.sh" on Linux OS.
TE Scripts are only needed to generate the vivado project, all other additional steps are optional and can also be executed by Xilinx Vivado/SDK GUI. For currently Scripts limitations on Win and Linux OS see: Project Delivery Currently limitations of functionality
- _create_win_setup.cmd/_create_linux_setup.sh and follow instructions on shell:
- Press 0 and enter to start "Module Selection Guide"
- (optional Win OS) Generate Virtual Drive or use short directory for the reference design (for example x:\<design name>)
- Create Project (follow instruction of the product selection guide), settings file will be configured automatically during this process
- (optional for manual changes) Select correct device and Xilinx install path on "design_basic_settings.cmd" and create Vivado project with "vivado_create_project_guimode.cmd"
Note: Select correct one, see TE Board Part Files
- (optional for manual changes) Select correct device and Xilinx install path on "design_basic_settings.cmd" and create Vivado project with "vivado_create_project_guimode.cmd"
- Create XSA and export to prebuilt folder
- Run on Vivado TCL: TE::hw_build_design -export_prebuilt
Note: Script generate design and export files into \prebuilt\hardware\<short dir>. Use GUI is the same, except file export to prebuilt folder
- Run on Vivado TCL: TE::hw_build_design -export_prebuilt
- Create Linux (uboot.elf and image.ub) with exported XSA
- XSA is exported to "prebuilt\hardware\<short name>"
Note: HW Export from Vivado GUI create another path as default workspace. - Create Linux images on VM, see PetaLinux KICKstart
- Use TE Template from /os/petalinux_ramdisk
- XSA is exported to "prebuilt\hardware\<short name>"
- Add Linux files (uboot.elf and image.ub) to prebuilt folder
- "prebuilt\os\petalinux\<DDR size>" or "prebuilt\os\petalinux\<short name>"
Notes: Scripts select "prebuilt\os\petalinux\<DDR size>", if exist, otherwise "prebuilt\os\petalinux\<short name>"
- "prebuilt\os\petalinux\<DDR size>" or "prebuilt\os\petalinux\<short name>"
- Generate Programming Files with Vitis
- Run on Vivado TCL: TE::sw_run_vitis -all
Note: Scripts generate applications and bootable files, which are defined in "sw_lib\apps_list.csv" - (alternative) Start SDK with Vivado GUI or start with TE Scripts on Vivado TCL: TE::sw_run_vitis
Note: TCL scripts generate also platform project, this must be done manuelly in case GUI is used. See Vitis
- Run on Vivado TCL: TE::sw_run_vitis -all
Launch
Programming
Check Module and Carrier TRMs for proper HW configuration before you try any design.
Xilinx documentation for programming and debugging: Vivado/SDK/SDSoC-Xilinx Software Programming and Debugging
Get prebuilt boot binaries
- _create_win_setup.cmd/_create_linux_setup.sh and follow instructions on shell
- Press 0 and enter to start "Module Selection Guide"
- Select assembly version
- Validate selection
- Select Create and open delivery binary folder
Note: Folder (<project foler>/_binaries_<Artikel Name>) with subfolder (boot_<app name>) for different applications will be generated
QSPI
- Connect JTAG and power on the carrier with module
- Open Vivado Project with "vivado_open_existing_project_guimode.cmd" or if not created, create with "vivado_create_project_guimode.cmd"
- Type on Vivado TCL Console: TE::pr_program_flash -swapp u-boot
Note: To program with Vitis GUI, use special FSBL (zynqmp_fsbl_flash) on setup
optional "TE::pr_program_flash -swapp hello_te0726" possible - Copy Petalinux image.ub on SD-Card
- use files from (<project foler>/_binaries_<Articel Name>)/boot_linux from generated binary folder,see: Get prebuilt boot binaries
- For correct prebuilt file location, see <design_name>/prebuilt/readme_file_location.txt
- Important: Do not copy Boot.bin on SD(is not used see SD note), only other files.
- Insert SD-Card
SD
Xilinx Zynq devices in CLG225 package do not support SD Card boot directly from ROM bootloader. Use QSPI for primary boot and SD for secondary boot (u-boot)
JTAG
Not used on this Example.
Usage
- Prepare HW like described in section TE0726 Zynqberry Demo4#Programming
- Connect UART USB (most cases same as JTAG)
- Insert SD Card with image.ub
- Power On PCB
Note: 1. Zynq Boot ROM loads FSBL from QSPI into OCM, 2. FSBL loads U-boot from QSPI into DDR, 3. U-boot load Linux from SD into DDR
Linux
- Open Serial Console (e.g. putty)
- Speed: 115200
- COM Port: Win OS, see device manager, Linux OS see dmesg |grep tty (UART is *USB1)
- Linux Console:
Note: Wait until Linux boot finished For Linux Login use:- User Name: root
- Password: root
Note: Wait until Linux boot finished For Linux Login use:- User Name: root
- Password: root
- You can use a Linux shell now.
- ETH0 works with udhcpc
- To know the board ip address, you can enter the following command:
- ifconfig
- You can find the ip address in :
- inet addr: <Board Ip Address>
- ifconfig
- Use the following command to connect the board to Jupyter Server:
jupyter notebook --ip=<Board Ip Address> --port=<An optional Number 0-9999> --NotebookApp.token='' --allow-root &
- For example : jupyter notebook --ip=192.168.2.1 --port=8888 --NotebookApp.token='' --allow-root &
- In Web Browser, open a page with the following address:
- <Board IP Address>:<Port Number> --→ For example 192.168.2.1:8888
- Written code in Python can now be executed.
Example code:
import matplotlib.pyplot as plt import numpy as np mu, sigma = 100, 15 x = mu + sigma * np.random.randn(10000) # the histogram of the data n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75) plt.xlabel('Smarts') plt.ylabel('Probability') plt.title('Histogram of IQ') plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.axis([40, 160, 0, 0.03]) plt.grid(True) plt.show()
System Design - Vivado
Block Design
PS Interfaces
Activated interfaces:
Type | Note |
---|---|
DDR | --- |
QSPI | MIO |
USB0 | MIO, ETH over USB |
SD1 | MIO |
UART1 | MIO |
I2C0 | EMIO |
I2C1 | MIO |
GPIO | MIO / EMIO |
USB RST | MIO |
TTC0..1 | MIO |
WDT | MIO |
AXI HP0..1 | |
DMA0..1 |
Constraints
Basic module constraints
# # Common BITGEN related settings for TE0726 # set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design] set_property CONFIG_VOLTAGE 3.3 [current_design] set_property CFGBVS VCCO [current_design] set_property BITSTREAM.CONFIG.UNUSEDPIN PULLUP [current_design]
Design specific constraint
# # # set_property BITSTREAM.CONFIG.UNUSEDPIN PULLUP [current_design]
#set_property IOSTANDARD LVCMOS33 [get_ports spdif_tx_o] #set_property PACKAGE_PIN K15 [get_ports spdif_tx_o] set_property IOSTANDARD LVCMOS33 [get_ports {GPIO_1_tri_io[*]}] # GPIO Pins # GPIO2 set_property PACKAGE_PIN K15 [get_ports {GPIO_1_tri_io[0]}] # GPIO3 set_property PACKAGE_PIN J14 [get_ports {GPIO_1_tri_io[1]}] # GPIO4 set_property PACKAGE_PIN H12 [get_ports {GPIO_1_tri_io[2]}] # GPIO5 set_property PACKAGE_PIN N14 [get_ports {GPIO_1_tri_io[3]}] # GPIO6 set_property PACKAGE_PIN R15 [get_ports {GPIO_1_tri_io[4]}] # GPIO7 set_property PACKAGE_PIN L14 [get_ports {GPIO_1_tri_io[5]}] # GPIO8 set_property PACKAGE_PIN L15 [get_ports {GPIO_1_tri_io[6]}] # GPIO9 set_property PACKAGE_PIN J13 [get_ports {GPIO_1_tri_io[7]}] # GPIO10 set_property PACKAGE_PIN H14 [get_ports {GPIO_1_tri_io[8]}] # GPIO11 set_property PACKAGE_PIN J15 [get_ports {GPIO_1_tri_io[9]}] # GPIO12 set_property PACKAGE_PIN M15 [get_ports {GPIO_1_tri_io[10]}] # GPIO13 set_property PACKAGE_PIN R13 [get_ports {GPIO_1_tri_io[11]}] # GPIO16 set_property PACKAGE_PIN L13 [get_ports {GPIO_1_tri_io[12]}] # GPIO17 set_property PACKAGE_PIN G11 [get_ports {GPIO_1_tri_io[13]}] # GPIO18 set_property PACKAGE_PIN H11 [get_ports {GPIO_1_tri_io[14]}] # GPIO19 set_property PACKAGE_PIN R12 [get_ports {GPIO_1_tri_io[15]}] # GPIO20 set_property PACKAGE_PIN M14 [get_ports {GPIO_1_tri_io[16]}] # GPIO21 set_property PACKAGE_PIN P15 [get_ports {GPIO_1_tri_io[17]}] # GPIO22 set_property PACKAGE_PIN H13 [get_ports {GPIO_1_tri_io[18]}] # GPIO23 set_property PACKAGE_PIN J11 [get_ports {GPIO_1_tri_io[19]}] # GPIO24 set_property PACKAGE_PIN K11 [get_ports {GPIO_1_tri_io[20]}] # GPIO25 set_property PACKAGE_PIN K13 [get_ports {GPIO_1_tri_io[21]}] # GPIO26 set_property PACKAGE_PIN L12 [get_ports {GPIO_1_tri_io[22]}] # GPIO27 set_property PACKAGE_PIN G12 [get_ports {GPIO_1_tri_io[23]}] ## DSI_D0_N #set_property PACKAGE_PIN F13 [get_ports {GPIO_1_tri_io[24]}] ## DSI_D0_P #set_property PACKAGE_PIN F14 [get_ports {GPIO_1_tri_io[25]}] ## DSI_D1_N #set_property PACKAGE_PIN F12 [get_ports {GPIO_1_tri_io[26]}] ## DSI_D1_P #set_property PACKAGE_PIN E13 [get_ports {GPIO_1_tri_io[27]}] ## DSI_C_N #set_property PACKAGE_PIN E11 [get_ports {GPIO_1_tri_io[28]}] ## DSI_C_P #set_property PACKAGE_PIN E12 [get_ports {GPIO_1_tri_io[29]}] ## CSI_D0_N #set_property PACKAGE_PIN M11 [get_ports {GPIO_1_tri_io[30]}] ## CSI_D0_P #set_property PACKAGE_PIN M10 [get_ports {GPIO_1_tri_io[31]}] ## CSI_D1_N #set_property PACKAGE_PIN P14 [get_ports {GPIO_1_tri_io[32]}] ## CSI_D2_P #set_property PACKAGE_PIN P13 [get_ports {GPIO_1_tri_io[33]}] ## CSI_C_N #set_property PACKAGE_PIN N12 [get_ports {GPIO_1_tri_io[34]}] ## CSI_C_P #set_property PACKAGE_PIN N11 [get_ports {GPIO_1_tri_io[35]}] ## PWM_R ##set_property PACKAGE_PIN N8 [get_ports {GPIO_1_tri_io[36]}] ## PWM_L ##set_property PACKAGE_PIN N7 [get_ports {GPIO_1_tri_io[37]}] # PWM_R set_property PACKAGE_PIN N8 [get_ports PWM_R] # PWM_L set_property PACKAGE_PIN N7 [get_ports PWM_L] set_property IOSTANDARD LVCMOS33 [get_ports PWM_*]
set_property IOSTANDARD TMDS_33 [get_ports hdmi_clk_p] set_property PACKAGE_PIN R7 [get_ports hdmi_clk_p] set_property IOSTANDARD TMDS_33 [get_ports {hdmi_data_p[*]}] set_property PACKAGE_PIN P8 [get_ports {hdmi_data_p[0]}] set_property PACKAGE_PIN P10 [get_ports {hdmi_data_p[1]}] set_property PACKAGE_PIN P11 [get_ports {hdmi_data_p[2]}]
set_property PACKAGE_PIN N11 [get_ports csi_c_clk_p] set_property IOSTANDARD LVDS_25 [get_ports csi_c_clk_p] set_property PACKAGE_PIN M9 [get_ports {csi_d_lp_n[0]}] set_property IOSTANDARD HSUL_12 [get_ports {csi_d_lp_n[0]}] set_property PACKAGE_PIN N9 [get_ports {csi_d_lp_p[0]}] set_property IOSTANDARD HSUL_12 [get_ports {csi_d_lp_p[0]}] set_property PACKAGE_PIN M10 [get_ports {csi_d_p[0]}] set_property IOSTANDARD LVDS_25 [get_ports {csi_d_p[0]}] set_property PACKAGE_PIN P13 [get_ports {csi_d_p[1]}] set_property IOSTANDARD LVDS_25 [get_ports {csi_d_p[1]}] set_property INTERNAL_VREF 0.6 [get_iobanks 34] set_property PULLDOWN true [get_ports {csi_d_lp_p[0]}] set_property PULLDOWN true [get_ports {csi_d_lp_n[0]}] # RPI Camera 1 create_clock -period 6.250 -name csi_clk -add [get_ports csi_c_clk_p] # RPI Camera 2.1 #create_clock -period 1.875 -name csi_clk -add [get_ports csi_c_clk_p]
set_property ASYNC_REG true [get_cells {zsys_i/audio/axi_i2s_adi_0/U0/ctrl/tx_sync/out_data_reg[4]}] set_property ASYNC_REG true [get_cells {zsys_i/audio/axi_i2s_adi_0/U0/ctrl/SDATA_O_reg[0]}] set_false_path -from [get_clocks clk_fpga_0] -to [get_clocks clk_fpga_3] set_false_path -from [get_clocks clk_fpga_3] -to [get_clocks clk_fpga_0] set_false_path -from [get_pins {zsys_i/axi_reg32_0/U0/axi_reg32_v1_0_S_AXI_inst/slv_reg16_reg[1]/C}] -to [get_pins zsys_i/video_in/axis_raw_demosaic_0/U0/colors_mode_i_reg/D] set_false_path -from [get_pins zsys_i/video_in/csi_to_axis_0/U0/lane_align_inst/err_req_reg/C] -to [get_pins zsys_i/video_in/csi2_d_phy_rx_0/U0/clock_upd_req_reg/D] set_false_path -from [get_pins {zsys_i/video_in/axi_vdma_0/U0/I_PRMRY_DATAMOVER/GEN_S2MM_FULL.I_S2MM_FULL_WRAPPER/GEN_INCLUDE_REALIGNER.I_S2MM_REALIGNER/GEN_INCLUDE_SCATTER.I_S2MM_SCATTER/sig_max_first_increment_reg[2]/C}] -to [get_pins zsys_i/video_in/axi_vdma_0/U0/I_PRMRY_DATAMOVER/GEN_S2MM_FULL.I_S2MM_FULL_WRAPPER/GEN_INCLUDE_REALIGNER.I_S2MM_REALIGNER/GEN_INCLUDE_SCATTER.I_S2MM_SCATTER/sig_btt_eq_0_reg/D] set_false_path -from [get_pins {zsys_i/video_in/axi_vdma_0/U0/I_PRMRY_DATAMOVER/GEN_S2MM_FULL.I_S2MM_FULL_WRAPPER/GEN_INCLUDE_REALIGNER.I_S2MM_REALIGNER/GEN_INCLUDE_SCATTER.I_S2MM_SCATTER/sig_btt_cntr_dup_reg[1]/C}] -to [get_pins zsys_i/video_in/axi_vdma_0/U0/I_PRMRY_DATAMOVER/GEN_S2MM_FULL.I_S2MM_FULL_WRAPPER/GEN_INCLUDE_REALIGNER.I_S2MM_REALIGNER/GEN_INCLUDE_SCATTER.I_S2MM_SCATTER/sig_btt_eq_0_reg/D]
Software Design - Vitis
For SDK project creation, follow instructions from:
Application
SDK Template location: ./sw_lib/sw_apps/
zynq_fsbl
TE modified 2019.2 FSBL
General:
- Modified Files:main.c, fsbl_hooks.h/.c (search for 'TE Mod' on source code)
Add Files: te_fsbl_hooks.h/.c(for hooks and board)\n\
- General Changes:
- Display FSBL Banner and Device ID
Module Specific:
- Add Files: all TE Files start with te_*
- enable VTC and VDMA cores for debian desktop
zynq_fsbl_flash
TE modified 2019.2 FSBL
General:
- Modified Files: main.c
- General Changes:
- Display FSBL Banner
- Set FSBL Boot Mode to JTAG
- Disable Memory initialisation
hello_te0726
Hello TE0726 is a Xilinx Hello World example as endless loop instead of one console output.
u-boot
U-Boot.elf is generated with PetaLinux. Vitis is used to generate Boot.bin.
Software Design - PetaLinux
For PetaLinux installation and project creation, follow instructions from:
Config
Start with petalinux-config or petalinux-config --get-hw-description
For Ubuntu Rootfs (petalinux_ubuntu):
Changes:
- CONFIG_SUBSYSTEM_BOOTARGS_AUTO=y
- CONFIG_SUBSYSTEM_BOOTARGS_EARLYPRINTK=y
- CONFIG_SUBSYSTEM_DEVICETREE_FLAGS=""
- # CONFIG_SUBSYSTEM_DTB_OVERLAY is not set
- # CONFIG_SUBSYSTEM_REMOVE_PL_DTB is not set
# CONFIG_SUBSYSTEM_ROOTFS_INITRAMFS is not set
# CONFIG_SUBSYSTEM_ROOTFS_INITRD is not set
# CONFIG_SUBSYSTEM_ROOTFS_JFFS2 is not set
# CONFIG_SUBSYSTEM_ROOTFS_NFS is not set
CONFIG_SUBSYSTEM_ROOTFS_SD=y
# CONFIG_SUBSYSTEM_ROOTFS_OTHER is not set
For Petalinux Ramdisk (petalinux_ramdisk):
Changes:
- # CONFIG_SUBSYSTEM_BOOTARGS_AUTO is not set
- CONFIG_SUBSYSTEM_USER_CMDLINE="console=ttyPS0,115200 earlycon clk_ignore_unused earlyprintk root=/dev/mmcblk0p rw rootwait cma=1024M"
- CONFIG_SUBSYSTEM_DEVICETREE_FLAGS=""
- # CONFIG_SUBSYSTEM_DTB_OVERLAY is not set
- # CONFIG_SUBSYSTEM_REMOVE_PL_DTB is not set
CONFIG_SUBSYSTEM_ROOTFS_INITRAMFS=y
# CONFIG_SUBSYSTEM_ROOTFS_INITRD is not set
# CONFIG_SUBSYSTEM_ROOTFS_JFFS2 is not set
# CONFIG_SUBSYSTEM_ROOTFS_NFS is not set
# CONFIG_SUBSYSTEM_ROOTFS_EXT is not set
# CONFIG_SUBSYSTEM_ROOTFS_OTHER is not set
U-Boot
Start with petalinux-config -c u-boot
For Ubuntu Rootfs (petalinux_ubuntu) / Petalinux Ramdisk (petalinux_ramdisk) :
Changes:
CONFIG_ENV_IS_NOWHERE=y
# CONFIG_ENV_IS_IN_SPI_FLASH is not set
Device Tree
/include/ "system-conf.dtsi" / { /*If Petalinux_ramdisk is used , you need to add the following bootargs.*/ chosen { bootargs= "console=ttyPS0,115200 earlycon clk_ignore_unused earlyprintk root=/dev/mmcblk0p rw rootwait cma=1024M"; }; }; / { #address-cells = <1>; #size-cells = <1>; reserved-memory { #address-cells = <1>; #size-cells = <1>; ranges; hdmi_fb_reserved_region@1FC00000 { compatible = "removed-dma-pool"; no-map; // 512M (M modules) reg = <0x1FC00000 0x400000>; // 128M (R modules) //reg = <0x7C00000 0x400000>; }; camera_fb_reserved_region@1FC00000 { compatible = "removed-dma-pool"; no-map; // 512M (M modules) reg = <0x1FC00000 0x400000>; // 128M (R modules) //reg = <0x7800000 0x400000>; }; }; hdmi_fb: framebuffer@0x1FC00000 { // HDMI out compatible = "simple-framebuffer"; // 512M (M modules) reg = <0x1FC00000 (1280 * 720 * 4)>; // 720p // 128M (R modules) //reg = <0x7C00000 (1280 * 720 * 4)>; // 720p width = <1280>; // 720p height = <720>; // 720p stride = <(1280 * 4)>; // 720p format = "a8b8g8r8"; status = "okay"; }; camera_fb: framebuffer@0x1FC00000 { // CAMERA in compatible = "simple-framebuffer"; // 512M (M modules) reg = <0x1FC00000 (1280 * 720 * 4)>; // 720p // 128M (R modules) //reg = <0x7800000 (1280 * 720 * 4)>; // 720p width = <1280>; // 720p height = <720>; // 720p stride = <(1280 * 4)>; // 720p format = "a8b8g8r8"; }; vcc_3V3: fixedregulator@0 { compatible = "regulator-fixed"; regulator-name = "vccaux-supply"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; regulator-always-on; }; }; &qspi { #address-cells = <1>; #size-cells = <0>; status = "okay"; flash0: flash@0 { compatible = "jedec,spi-nor"; reg = <0x0>; #address-cells = <1>; #size-cells = <1>; spi-max-frequency = <50000000>; partition@0x00000000 { label = "boot"; reg = <0x00000000 0x00500000>; }; partition@0x00500000 { label = "bootenv"; reg = <0x00500000 0x00020000>; }; partition@0x00520000 { label = "kernel"; reg = <0x00520000 0x00a80000>; }; partition@0x00fa0000 { label = "spare"; reg = <0x00fa0000 0x00000000>; }; }; }; /* * We need to disable Linux VDMA driver as VDMA * already configured in FSBL */ &video_in_axi_vdma_0 { status = "disabled"; }; &video_out_axi_vdma_0 { status = "disabled"; }; &video_out_v_tc_0 { //xilinx-vtc: probe of 43c20000.v_tc failed with error -2 status = "disabled"; }; &gpio0 { interrupt-controller; #interrupt-cells = <2>; }; &i2c1 { #address-cells = <1>; #size-cells = <0>; i2cmux0: i2cmux@70 { compatible = "nxp,pca9544"; #address-cells = <1>; #size-cells = <0>; reg = <0x70>; i2c1@0 { #address-cells = <1>; #size-cells = <0>; reg = <0>; id_eeprom@50 { compatible = "atmel,24c32"; reg = <0x50>; }; }; i2c1@1 { // Display Interface Connector #address-cells = <1>; #size-cells = <0>; reg = <1>; }; i2c1@2 { // HDMI Interface Connector #address-cells = <1>; #size-cells = <0>; reg = <2>; }; i2c1@3 { // Camera Interface Connector #address-cells = <1>; #size-cells = <0>; reg = <3>; }; }; }; /{ usb_phy0: usb_phy@0 { compatible = "ulpi-phy"; #phy-cells = <0>; reg = <0xe0002000 0x1000>; view-port = <0x0170>; drv-vbus; }; }; &usb0 { usb-phy = <&usb_phy0>; } ; /* * Sound configuration */ /{ // Custom driver based on spdif-transmitter te_audio: dummy_codec_te { compatible = "te,te-audio"; #sound-dai-cells = <0>; }; // Simple Audio Card from AXI_I2S and custom XADC audio input and // PWM audio output cores sound { compatible = "simple-audio-card"; simple-audio-card,name = "TE0726-PWM-Audio"; simple-audio-card,format = "i2s"; simple-audio-card,widgets = "Microphone", "In Jack", "Line", "Line In Jack", "Line", "Line Out Jack", "Headphone", "Out Jack"; simple-audio-card,routing = "Out Jack", "te-out", "te-in", "In Jack"; simple-audio-card,cpu { sound-dai = <&audio_axi_i2s_adi_0>; }; simple-audio-card,codec { sound-dai = <&te_audio>; }; }; }; &audio_axi_i2s_adi_0 { compatible = "adi,axi-i2s-1.00.a"; reg = <0x43c00000 0x1000>; clocks = <&clkc 15>, <&clkc 18>; // FCLK_CLK0, FCLK_CLK3 clock-names = "axi", "ref"; dmas = <&dmac_s 0 &dmac_s 1>; dma-names = "tx", "rx"; #sound-dai-cells = <0>; }; /* * We need to disable Linux XADC driver to use XADC for audio recording */ &adc { status = "disabled"; };
Kernel
Start with petalinux-config -c kernel
For Ubuntu Rootfs (petalinux_ubuntu) / Petalinux Ramdisk (petalinux_ramdisk) :
Changes:
CONFIG_XILINX_GMII2RGMII=y
CONFIG_USB_USBNET=y
CONFIG_USB_NET_AX8817X=y
CONFIG_USB_NET_AX88179_178A=y
CONFIG_USB_NET_CDCETHER=y
# CONFIG_USB_NET_CDC_EEM is not set
CONFIG_USB_NET_CDC_NCM=y
# CONFIG_USB_NET_HUAWEI_CDC_NCM is not set
# CONFIG_USB_NET_CDC_MBIM is not set
# CONFIG_USB_NET_DM9601 is not set
# CONFIG_USB_NET_SR9700 is not set
# CONFIG_USB_NET_SR9800 is not set
# CONFIG_USB_NET_SMSC75XX is not set
CONFIG_USB_NET_SMSC95XX=y
# CONFIG_USB_NET_GL620A is not set
CONFIG_USB_NET_NET1080=y
# CONFIG_USB_NET_PLUSB is not set
# CONFIG_USB_NET_MCS7830 is not set
# CONFIG_USB_NET_RNDIS_HOST is not set
CONFIG_USB_NET_CDC_SUBSET_ENABLE=y
CONFIG_USB_NET_CDC_SUBSET=y
# CONFIG_USB_ALI_M5632 is not set
# CONFIG_USB_AN2720 is not set
CONFIG_USB_BELKIN=y
CONFIG_USB_ARMLINUX=y
# CONFIG_USB_EPSON2888 is not set
# CONFIG_USB_KC2190 is not set
CONFIG_USB_NET_ZAURUS=y
# CONFIG_USB_NET_CX82310_ETH is not set
# CONFIG_USB_NET_KALMIA is not set
# CONFIG_USB_NET_QMI_WWAN is not set
# CONFIG_USB_NET_INT51X1 is not set
# CONFIG_USB_SIERRA_NET is not set
# CONFIG_USB_VL600 is not set
# CONFIG_USB_NET_CH9200 is not set
CONFIG_USBIP_CORE=y
# CONFIG_USBIP_VHCI_HCD is not set
# CONFIG_USBIP_HOST is not set
# CONFIG_USBIP_VUDC is not set
# CONFIG_USBIP_DEBUG is not set
CONFIG_FB_SIMPLE=y
CONFIG_SND_SIMPLE_CARD_UTILS=y
CONFIG_SND_SIMPLE_CARD=y
- CONFIG_FRAMEBUFFER_CONSOLE is not set
Rootf
Start with petalinux-config -c rootfs
For Ubuntu Rootfs (petalinux_ubuntu) :
File System will be generated with Ubuntu script (mkubuntu_jupyter.sh)
For Petalinux Ramdisk (petalinux_ramdisk) :
Changes:
- i2c-tools
- alsa-plugins
- alsa-lib-dev
- libasound
- alsa-conf-base
- alsa-conf
- alsa-utils
- alsa-utils-aplay
- busybox-httpd
Applications
For Ubuntu Rootfs (petalinux_ubuntu) :
Applications like Jupyter Notebook and Python3 will be generated with Ubuntu script (mkubuntu_jupyter.sh)
For Petalinux Ramdisk (petalinux_ramdisk) :
- To install the applications like Jupyter Notebook and Python3:
- Create layer.conf File as follows and save it in the path /petalinux_ramdisk/project-spec/meta-user/conf
# We have a conf and classes directory, add to BBPATH BBPATH .= ":${LAYERDIR}" # We have a packages directory, add to BBFILES BBFILES += "\ ${LAYERDIR}/recipes-*/*.bb \ ${LAYERDIR}/recipes-*/*.bbappend \ ${LAYERDIR}/recipes-*/*/*.bb \ ${LAYERDIR}/recipes-*/*/*.bbappend \ " BBFILE_COLLECTIONS += "meta-user" BBFILE_PATTERN_meta-user = "^${LAYERDIR}/" BBFILE_PRIORITY_meta-user = "6" LAYERSERIES_COMPAT_meta-user = "thud" BBFILE_COLLECTIONS += "jupyter-layer" BBFILE_PATTERN_jupyter-layer = "^${LAYERDIR}/" BBFILE_PRIORITY_jupyter-layer = "7" LAYERDEPENDS_jupyter-layer = "core meta-python" LAYERSERIES_COMPAT_jupyter-layer = "thud warrior"
- Edit the petalinuxbsp.conf file as follows in the path /petalinux_ramdisk/project-spec/meta-user/conf :
#User Configuration #OE_TERMINAL = "tmux" # Add EXTRA_IMAGEDEPENDS default components EXTRA_IMAGEDEPENDS_append = " virtual/fsbl" # prevent U-Boot from deploying the boot.bin SPL_BINARY = "" #Remove all qemu contents IMAGE_CLASSES_remove = "image-types-xilinx-qemu qemuboot-xilinx" IMAGE_FSTYPES_remove = "wic.qemu-sd" EXTRA_IMAGEDEPENDS_remove = "qemu-helper-native virtual/boot-bin" IMAGE_INSTALL_append="\ python3 \ python3-pip \ python3-jupyterlab \ python3-matplotlib \ python3-pillow \ python3-pydot \ python3-numpy \ python3-psutil \ python3-pandas \ python3-ipywidgets \ "
- Copy the recipes-python folder in /petalinux_ramdisk/project-spec/meta-user
- After buliding in petalinux all of the written applications in the config files will be installed.
- To get more information refer to : https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
Kernel Modules
te-audio-codec
Simple module stab to use audio interface.
See: \os\petalinux\project-spec\meta-user\recipes-modules\te-audio-codec\files
Additional Software
No additional software is needed.
Appx. A: Change History and Legal Notices
Document Change History
To get content of older revision got to "Change History" of this page and select older document revision number.
Date | Document Revision | Authors | Description |
---|---|---|---|
| |||
2020-05-28 | v.3 | Mohsen Chamanbaz |
|
-- | all | -- |
Legal Notices
Data Privacy
Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy
Document Warranty
The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.
Limitation of Liability
In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.
Copyright Notice
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.
Technology Licenses
The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.
Environmental Protection
To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.
REACH, RoHS and WEEE
REACH
Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).
RoHS
Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.
WEEE
Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).
Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.
Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.