Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Additional assembly options are available for cost or performance optimization upon request.

Initial Delivery State

Storage device name

Content

Notes

24AA025E48 EEPROM

User content not programmed

Valid MAC Address from manufacturer.

SPI Flash OTP Area

Empty, not programmed

Except serial number programmed by flash vendor.

SPI Flash Quad Enable bit

Programmed

-

SPI Flash main array

Demo design

-

eFUSE USER

Not programmed

-

eFUSE Security

Not programmed

-
Si5338 OTP NVMDefault settings pre programmedOTP not reprogrammable after delivery from factory

Table 1: Initial delivery state

...

The I/O signals are routed from the SoC's PL banks as LVDS-pairs to the B2B connector.

BankTypeB2B ConnectorI/O signal countLVDS-pairs countVCCO bank voltageNotes
12HRJ15024user (VCCIO_12)supported voltages from 1.2V to 3.3V
13HRJ15024user (VCCIO_13)supported voltages from 1.2V to 3.3V
34HRJ25024user (VCCIO_34)supported voltages from 1.2V to 3.3V
35HRJ25024user (VCCIO_35)supported voltages from 1.2V to 3.3V
500MIOJ25-1.8V-
501MIOJ312-1.8V-

Table 2:  B2B connector pin-outs of available PL and PS banks of the SoC module

...

The MGT-banks have also clock input-pins which are exposed to the B2B connector J3. Following MGT-lanes are available on the B2B connectors:

BankI/O signal countLVDS-pairs countMGT-lanes count (RX/TX LVDS-pairs)bank's reference clock inputs (LVDS-pairs)Notes
Bank 11120104

1 reference clock signal (MGT_CLK3) from programmable quad PLL clock generator U16 to bank's pins AA6/AA5.

1 reference clock signal (MGT_CLK2) from B2B connector J3 (pins J3-81/J3-83) to bank's pins W6/W5.

-
Bank 11220104

1 reference clock signal (MGT_CLK1) from programmable quad PLL clock generator U16 to bank's pins U6/U5.

1 reference clock signal (MGT_CLK0) from B2B connector J3 (pins J3-75/J3-77) to bank's pins R6/R5.

-

Table 3:  B2B connector pin-outs of available MGT-lanes of the SoC module

...

The B2B connector provides further interfaces like 'JTAG' and 'I²C' to the System Controller CPLD:

InterfacesI/O signal countpin schematic names / B2B pinsconnected withNotes
JTAG5

TMS, pin J1-144

TDI, pin J1-142

TDO, pin J1-145

TCK, pin J1-143

 JTAG_EN, pin J1-148

SC CPLD, bank 0
Note
JTAG_EN pin in B2B connector J1-148 should be kept low or grounded for normal operation!

At normal operation the JTAG-signals will be forwarded to the SoC module. Else the JTAG_EN pin must be high or open to update the CPLD firmware via JTAG-interface.

VCCIO: PS_3.3V

I²C2

I2C_33_SCL, pin J2-119

I2C_33_SDA, pin J2-121

RTC, U24

SC CPLD, U2

MAC Address EEPROM, U23

Zynq-module, U1

Quad programmable PLL clock generator, U16


The I²C-interface of the RTC U24 (pin 12: SCL, pin 11: SDA) and the B2B-connector J2 are operating with the reference voltage PS_3.3V.

Following component's I²C-interfaces are operating with the reference voltage PS_1.8V (voltage level shifting (3.3V ↔ 1.8V) via I²C bus repeater U17):

SC CPLD U2, bank 2, pins 16 (SDA), 17 (SCL)

MAC Address EEPROM U23, pins 1 (SCL), 3 (SDA)

Zynq-chip U1, bank 500 (MIO0), pins A25 (SCL), B26 (SDA)

Quad programmable PLL clock generator U16: pins 12 (SCL), 19 (SDA)

Component's I²C

Address Map

Addresses:

RTC: 0x6F

RTC RAM: 0x57

MAC Address EEPROM: 0x53

Quad programmable PLL clock generator: 0x70

control lines5

RST_IN_N, pin J2-131

PS_SRST, pin J2-152

BOOTMODE, pin J2-133

PWR_PL_OK, pin J2-135

PWR_PS_OK, pin J2-139

SC CPLD bank 0, pins 25; Reset Circuit U41, pin 3

SC CPLD bank 2, pin 12; Zynq-chip bank 501, pin A22

Zynq-chip bank 500, pin F24


 



SC CPLD bank 0, pin 27; PG-signal DCDC-converter U8, pin 9

SC CPLD bank 0, pin 28; PG-signal DCDC-converter U31, pin 2

Low-active Power-On reset-pin, controls POR_B-signal (bank 500, pin C23) of Zynq-chip.

Low-active system-reset pin of Zynq-chip.

Control line which sets in conjunction with signal 'BOOTMODE1' the boot source of the Zynq-chip. See section "Boot Modes".

 

...

Indicates stable state of PL supply voltage (low-active).

Indicates stable state of PS supply voltage (low-active).

Table 4:  B2B connector pin-outs of available interfaces

...

Special purpose pins are connected to System Controller CPLD and have following default configuration:

Pin NameModeFunctionDefault Configuration
EN1InputPower Enable

No hard wired function on PCB, when forced low pulls POR_B low to

emulate power on reset.

PGOODOutputPower GoodActive high when all on-module power supplies are working properly.
NOSEQ--No function.
RESINInputReset

Active low reset, gated to POR_B.

JTAGENInputJTAG SelectLow for normal operation.

LEDs

LEDColorConnected toDescription and Notes

D2

Green

DONE

Reflects inverted DONE signal. ON when FPGA is not configured,

OFF as soon as PL is configured.

This LED will not operate if the SC can not power on the 3.3V output

rail that also powers the 3.3V circuitry on the module.

D3

Red

SC

System main status LED.

D4

Green

MIO7

User controlled, default OFF (when PS7 has not been booted).

Default MIO Mapping

MIOFunctionB2B PinNotes MIOFunctionB2B PinNotes
0GPIOJM1-87B2B 16..27ETH0-RGMII
1QSPI0-SPI Flash-CS 28..39USB0-ULPI
2QSPI0-SPI Flash-DQ0 40SDIO0JM1-27B2B
3QSPI0-SPI Flash-DQ1 41SDIO0JM1-25B2B
4QSPI0-SPI Flash-DQ2 42SDIO0JM1-23B2B
5QSPI0-SPI Flash-DQ3 43SDIO0JM1-21B2B
6QSPI0-SPI Flash-SCK 44SDIO0JM1-19B2B
7GPIO-Green LED D4 45SDIO0JM1-17B2B
8QSPI0-SPI Flash-SCKFB 46GPIO-

Ethernet PHY LED2

INTn Signal.

9 JM1-91B2B 47GPIO-RTC Interrupt
10 JM1-95B2B 48I2C1-SCL on-board I2C
11 JM1-93B2B 49I2C1-SDA on-board I2C
12 JM1-99B2B 50GPIO-ETH0 Reset
13 JM1-97B2B 51GPIO-USB Reset
14UART0JM1-92B2B 52ETH0-MDC
15UART0JM1-85B2B 53ETH0-MDIO

Gigabit Ethernet

On board Gigabit Ethernet PHY is provided with Marvell Alaska 88E1512 IC. The Ethernet PHY RGMII Interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. SGMII (SFP copper or fiber) can be used directly with the Ethernet PHY, as the SGMII pins are available on the B2B connector JM3. The reference clock input of the PHY is supplied from an on-board 25MHz oscillator (U9), the 125MHz output clock is connected to IN5 of the PLL chip (U10).

Ethernet PHY connection

PHY PinZYNQ PSZYNQ PLNotes
MDC/MDIOMIO52, MIO53--
LED0-J3Can be routed via PL to any free PL I/O pin in B2B connector.
LED1-K8

Can be routed via PL to any free PL I/O pin in B2B connector.

This LED is connected to PL via level-shifter implemented in

system controller CPLD.

LED2/InterruptMIO46--
CONFIG--

By default the PHY address is strapped to 0x00, alternate

configuration is possible.

RESETnMIO50--
RGMIIMIO16..MIO27--
SGMII--on B2B.
MDI--on B2B.

USB Interface

USB PHY is provided by USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0. The I/O Voltage is fixed at 1.8V. The reference clock input of the PHY is supplied from an on-board 25 MHz oscillator (U15).

USB PHY connection

PHY PinZYNQ PinB2B NameNotes
ULPIMIO28..39-Zynq USB0 MIO pins are connected to the PHY.
REFCLK--52MHz from on board oscillator (U15).
REFSEL[0..2]--Reference clock frequency select, all set to GND selects 52MHz.
RESETBMIO51-Active low reset.
CLKOUTMIO36-Connected to 1.8V, selects reference clock operation mode.
DP, DM-OTG_D_P, OTG_D_NUSB data lines.
CPEN-VBUS_V_ENExternal USB power switch active high enable signal.
VBUS-USB_VBUSConnect to USB VBUS via a series of resistors, see reference schematics.
ID-OTG_IDFor an A-Device connect to ground, for a B-Device left floating.

The schematics for the USB connector and required components is different depending on the USB usage. USB standard A or B connectors can be used for Host or Device modes. A Mini USB connector can be used for USB Device mode. A USB Micro connector can be used for Device mode, OTG Mode or Host Mode.

...

By default the TE-0715 supports QSPI and SD Card boot modes which is controlled by the MODE input signal from the B2B connector.

MODE Signal State

Boot Mode

High or open

QSPI

Low or ground

SD Card

On-board Peripherals

Processing System (PS) Peripherals

NameICIDPS7MIONotes
SPI FlashS25FL256SAGBHI20U14QSPI0MIO1..MIO6 
EEPROM I2C24AA025E48U19I2C1MIO48, MIO49EEPROM for MAC Address.
RTCISL2020U16I2C1MIO48, MIO49

Temperature compensated RTC.

RTC InterruptISL2020U16GPIOMIO47Real Time Clock Interrupt.
Clock PLLSi5338U10I2C1MIO48, MIO49Low jitter phase locked loop.
LED-D4GPIOMIO7 
USBUSB3320U6USB0MIO28..MIO39 
USB Reset--GPIOMIO51 
Ethernet88E1512U7ETH0MIO16..MIO27 
Ethernet Reset--GPIOMIO50 

Clocking

ClockFrequencyICFPGANotes

PS CLK

33.3333 MHz

U11

PS_CLK

PS subsystem main clock.

ETH PHY reference

25 MHz

U9

-

-

USB PHY reference

52 MHz

U15

-

-

PLL reference

25 MHz

U18

-

-

GT REFCLK0

-

B2B

U9/V9

Externally supplied from baseboard.

GT REFCLK1

125 MHz

U10 Si5338

U5/V5

Default clock is 125 MHz.

RTC - Real Time Clock

An temperature compensated Intersil ISL12020M is used for Real Time Clock (U16). Battery voltage must be supplied to the module from the main board. Battery backed registers can be accessed over I2C bus at slave address of 0x6F. General purpose RAM is at I2C slave address 0x57. RTC IC is supported by Linux so it can be used as hwclock device.

...

There is a Silicon Labs I2C programmable clock generator Si5338A (U10) chip on the module. It's output frequencies can be programmed using the I2C bus address 0x70.

PLL connection

I/ODefault FrequencyNotes

IN1/IN2

Externally supplied

Needs decoupling on base board.

IN3

25MHz

Fixed input clock.

IN4

-

-

IN5/IN6

125MHz

Ethernet PHY output clock.

CLK0

-

Not used, disabled.

CLK1

-

Not used, disabled.

CLK2 A/B

125MHz

MGT reference clock 1.

CLK3A

Bank 34 clock input, default disabled, User clock.

CLK3B

-

Not used, disabled.

MAC Address EEPROM

A Microchip 24AA025E48 EEPROM (U19) is used which contains a globally unique 48-bit node address, that is compatible with EUI-48(TM) and EUI-64(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. It is accessible through the I2C slave address 0x50.

...

Power supply with minimum current capability of 3A for system startup is recommended.

Power Consumption

Power Input PinMax Current
VINTBD*
3.3VINTBD*

 * TBD - To Be Determined soon with reference design setup.

...

See Xilinx datasheet DS187 (for XC7Z015) or DS191 (for XC7Z030) for additional information. User should also check related baseboard documentation when choosing baseboard design for TE0715 module.

Page break

Power Rails

Voltages on B2B

Connectors

B2B JM1 Pin

B2B JM2-Pin

Input/

Output

Note
VIN1, 3, 52, 4, 6, 8InputSupply voltage.
3.3VIN13, 15-InputSupply voltage.
VCCIO139, 11-InputHigh range bank voltage.
VCCIO34-5Input

TE0715-xx-15: high range bank voltage.

TE0715-xx-30: high performance bank voltage.
VCCIO35-7, 9Input

TE0715-xx-15: high range bank voltage.

TE0715-xx-30: high performance bank voltage.
VBAT_IN79-InputRTC battery-buffer supply voltage.
3.3V-10, 12OutputInternal 3.3V voltage level.
1.8V39-OutputInternal 1.8V voltage level.
DDR_PWR-19OutputInternal 1.5V or 1.35V voltage level, depends on revision.
VREF_JTAG 91OutputJTAG reference voltage (3.3V).

Bank Voltages

Bank          

Schematic Name

Voltage

TE0715-xx-15        

TE0715-xx-30           

500VCCO_MIO0_500  3.3V--
501VCCO_MIO1_501  1.8V--
502VCCO_DDR_502   1.5V--
0 ConfigVCCO_03.3V--
13 HRVCCO_13UserHR: 1.2V to 3.3V
HR: 1.2V to 3.3V
34 HR/HPVCCO_34UserHR: 1.2V to 3.3V
HP: 1.2V to 1.8V
35 HR/HPVCCO_35UserHR: 1.2V to 3.3V
HP: 1.2V to 1.8V

 

Absolute Maximum Ratings

Parameter

MinMax

Units

Notes

VIN supply voltage

-0.3

6.0

V

-

3.3VIN supply voltage

-0.4

3.6

V

-
VBAT supply voltage-16.0V-
PL IO bank supply voltage for HR I/O banks (VCCO)-0.53.6V-

PL IO bank supply voltage for HP I/O banks (VCCO)

-0.52.0VTE0715-xx-15 does not have HP banks.
I/O input voltage for HR I/O banks-0.4VCCO_X+0.55V-
I/O input voltage for HP I/O banks-0.55VCCO_X+0.55VTE0715-xx-15 does not have HP banks.
GT receiver (RXP/RXN) and transmitter (TXP/TXN)-0.51.26V-

Voltage on module JTAG pins

-0.4

VCCO_0+0.55

V

VCCO_0 is 3.3V nominal.

Storage temperature

-40

+85

°C

-
Storage temperature without the ISL12020MIRZ-55+100°C-
Note
Assembly variants for higher storage temperature range are available on request.

...

Recommended Operating Conditions

ParameterMinMaxUnitsNotesReference Document
VIN supply voltage2.55.5V  
3.3VIN supply voltage3.1353.465V  
VBAT_IN supply voltage2.75.5V  

PL I/O bank supply voltage for HR

I/O banks (VCCO)

1.143.465V Xilinx datasheet DS191

PL I/O bank supply voltage for HP

I/O banks (VCCO)

1.141.89V

TE0715-xx-15 does not have

HP banks

Xilinx datasheet DS191
I/O input voltage for HR I/O banks(*)(*)V(*) Check datasheet

Xilinx datasheet DS191

or DS187

I/O input voltage for HP I/O banks(*)(*)V

TE0715-xx-15 does not have

HP banks

(*) Check datasheet

Xilinx datasheet DS191
Voltage on Module JTAG pins3.1353.465VVCCO_0 is 3.3 V nominal 

B2B connectors

Include Page
IN:SS5-ST5 connectors
IN:SS5-ST5 connectors

...