You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 7 Next »

Download PDF version of this document.

Table of Contents

Overview

The Trenz Electronic TEB0724-01 is a developement carrier board for the TE0724 and compatible modules. It facilitates easy access to all on the module available features. 

Key Features

  • Samtec 160 pin board to board connector for 4,0 cm x 6,0 cm module
  • 10x 2x6 Pin Pmods, (8 usable as dual Pmods, 1x single Pmod, 1x I2C compatible Pmod)
  • MicroUSB to JTAG/UART bridge
  • CAN screw terminal
  • RJ45 Gigabit Ethernet MagJack connector
  • 6x LED, 2x Push Buttons on FPGA
  • 1 LED and 1 Push Button on PS
  • Power and Reset Push Buttons
  • On-board Power Protection Circuit and Power on LED

Block Diagram


Figure 1: TEB0724 block diagram

Main Components

draw.io

Diagram attachment access error: cannot display diagram

Figure 2: TEB0724 main components


Table 1: TE0724-01 main components.

  1. Module connector for 4,0x6.0 cm module
  2. Pmods usabel as dual Pmods, J10, J11, J12, J13, J14, J15, J16, J17  
  3. Pmod (single), J20  
  4. I2C Pmod, J21
  5. CAN screw terminal, J2
  6. 5V 2.1mm input jack, J18
  7. microUSB J4
  8. USB to JTAG/UART bridge FT2232H, U1
  9. Configuration EEPROM U3
  10. RJ45 Gigabit Ehternet Jack, J3
  11. Power Button, S1
  12. Reset Button, S3
  13. User Button PS, S5
  14. User LED (green) PS, D8 
  15. 2x User Button PL, S2, S4
  16. 6x User LEDs (red) PL, D2-D7 
  17. Power LED (green), D36
  18. 2x10 Pin header for Boot and Programming options, J6
  19. microSD Card Slot, J5

Initial Delivery State

Not programmed.

Storage device name

Content

Notes

FTDI Configuration EEPROM U3EmptyNot programmed.

Table 2: Initial delivery state of programmable devices on the baseboard.

Boot Process

The boot device is selected by the mode jumpers on pin header J6. Placing a jumper at pin 13-14 sets Mode0 to low level. Mode1 is set to low level by jumper on over pin 15-16. Boot modes are further described at the corresponding section of the modules, e.g. Table 2, Boot mode selection of TE0724 TRM. Default with no jumpers is boot from SD-Card.

Signals, Interfaces and Pins

Board to Board (B2B) I/Os

I/O signals connected to the B2B connector: 

B2B ConnectorInterfacesCount of IO'sNotes
J1User IO72 single ended or 36 differential9x Pmod
6 LEDred
2 Push Button-
7 MIOJ7 (not assembled), TE0724: 3.3V
2 MIOJ9 (not assembled), TE0724: 1.8V
1 MIO LEDgreen
1 MIO Push Button-
I²C21x Pmod
SD IO7-
UART2-
CAN2-
GbE PHY_MDIO + PHY_LEDs10-
JTAG4-
Power GPIO2-
Power/Reset/Fuse programming3-
Bootmode2-

Table 3: General overview of PL I/O signals and SoM's interfaces connected to the B2B connectors.


The TEB0724 carrier board supplies the attached module with 5V DC. All power rails on the  module and the baseboard are generated from this at the module and routed back the carrier. For detailed information about the pin out, please refer to the Pin-out Tables. 

JTAG Interface

There is no device with JTAG port on the baseboard. JTAG access to the module is provided through B2B connector J1. This is routed to the USB to JTAG/UART bridge.

JTAG Signal

B2B Connector Pin

TCKJ1-147
TDIJ1-151
TDOJ1-145
TMSJ1-149

Table 4: JTAG interface signals.

System Control  I/O Pins

Pin NameModeFunctionB2B Connector PinDefault Configuration










Table 5: System Controller CPLD I/O pins.


SD Card Interface

Connected ToSignal NameNotes
J1-34SD-CDCard detect switch
J1-24SD-D0
J1-22SD-CMD
J1-20SD-CCLK
J1-26SD-D1
J1-28SD-D2
J1-30SD-D3

Table 6: SD Card interface signals and connections.

Ethernet Interface

On board Gigabit Ethernet PHY is provided with ...

Ethernet PHY connection

PHY PinPSPLB2BNotes





Table x: ...

I2C Interface

On-board I2C bus is connected to the following pins:

SDASCLNotes
J1-144J1-142B2B
J6-7J6-5In-Circuit Programming
J21-10, J21-4J21-9, J21-3PMOD

Table x: I2C slave device addresses.

On-board Peripherals

Gigabit Ethernet PHY

On-board Gigabit Ethernet PHY (U7) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U9), the 125MHz output clock signal CLK_125MHZ is connected to the pin J2-150 of B2B connector J2.

Oscillators

The module has following reference clock signals provided by on-board oscillators and external source from carrier board:

Clock SourceSchematic NameFrequencyClock Destination
........
SiTime SiT8008BI oscillator, U21-25.000000 MHzQuad PLL clock generator U16, pin 3.

Table : Reference clock signals.

On-board LEDs

LED ColorSignalDescription and Notes
D1greenVINpower indicator
D2-D7redULED1..6User LED
D8greenMIO9MIO user LED

Table : On-board LEDs.

Power and Power-On Sequence

Power Consumption

The maximum power consumption of a module mainly depends on the design running on the FPGA.

Xilinx provide a power estimator excel sheets to calculate power consumption. It's also possible to evaluate the power consumption of the developed design with Vivado. See also Trenz Electronic Wiki FAQ.

Power InputTypical Current
VINTBD*
3.3VINTBD*

Table : Typical power consumption.


 * TBD - To Be Determined soon with reference design setup.

Power supply with minimum current capability of ...A for system startup is recommended.

For the lowest power consumption and highest efficiency of the on-board DC-DC regulators it is recommended to power the module from one single 3.3V supply. All input power supplies have a nominal value of 3.3V. Although the input power supplies can be powered up in any order, it is recommended to power them up simultaneously.

The on-board voltages of the TE07xx SoC module will be powered-up in order of a determined sequence after the external voltages '...', '...' and '...' are available. All those power-rails can be powered up, with 3.3V power sources, also shared. <-- What?

To avoid any damage to the module, check for stabilized on-board voltages should be carried out(i.e. power good and enable signals) before powering up any SoC's I/O bank voltages VCCO_x. All I/Os should be tri-stated during power-on sequence.

Power Distribution Dependencies

Regulator dependencies and max. current.

Put power distribution diagram here...

Figure : Module power distribution diagram.


See Xilinx data sheet ... for additional information. User should also check related base board documentation when intending base board design for TE07xx module.

Power-On Sequence

The TE07xx SoM meets the recommended criteria to power up the Xilinx Zynq MPSoC properly by keeping a specific sequence of enabling the on-board DC-DC converters dedicated to the particular functional units of the Zynq chip and powering up the on-board voltages.

Following diagram clarifies the sequence of enabling the particular on-board voltages, which will power-up in descending order as listed in the blocks of the diagram:

Put power-on diagram here...

Figure : Module power-on diagram.


Power Rails

NB! Following table with examples is valid for most of the 4 x 5 cm modules but depending on the module model and specific design, number and names of power rails connected to the B2B connectors may vary.

Power Rail Name

B2B JM1 Pins

B2B JM2 Pins

Direction

Notes
VIN1, 3, 52, 4, 6, 8InputMain supply voltage from the carrier board.
3.3V-10, 12, 91OutputModule on-board 3.3V voltage supply. (would be good to add max. current allowed here if  possible)
B64_VCO9, 11-InputHR (High Range) bank voltage supply from the carrier board.

VBAT_IN

79-InputRTC battery supply voltage from the carrier board.
...............

Table : Module power rails.

Different modules (not just 4 x 5 cm ones) have different type of connectors with different specifications. Following note is for Samtec Razor Beam™ LSHM connectors only, but we should consider adding such note into included file in Board to Board Connectors section instead of here.

Current rating of  Samtec Razor Beam™ LSHM B2B connectors is 2.0A per pin (2 adjacent pins powered).

Board to Board Connectors

The TEB0724 base board has two 160-pin double-row REF-189019-02 connectors on the bottom side.

Order
number

REF NumberSamtec NumberTypeMated HeightData sheetComment
-REF-192552-01SS5-80-3.50-L-D-K-TRBaseboard connector4 mmhttp://suddendocs.samtec.com/catalog_english/ss5.pdfStandard connector
used on board
27220REF-192552-02ST5-80-1.50-L-D-P-TRModule connector4 mmhttp://suddendocs.samtec.com/catalog_english/st5.pdfStandard connector
used on module

Table 15: Connectors for module and baseboard.


Variants Currently In Production

Trenz shop TEB0724 overview page
English page

German page

Technical Specifications

Absolute Maximum Ratings

Parameter

MinMax

Units

Reference Document

VIN supply voltage



V

-

Storage temperature



°C

-

Table : Board absolute maximum ratings.


Assembly variants for higher storage temperature range are available on request.

Recommended Operating Conditions

ParameterMinMaxUnitsReference Document
VIN supply voltage



Operating temperature



Table : Board recommended operating conditions.


Please check Xilinx datasheet ... for complete list of absolute maximum and recommended operating ratings.

Operating Temperature Ranges

Commercial grade: 0°C to +70°C.

Extended grade: 0°C to +85°C.

Industrial grade: -40°C to +85°C.

Module operating temperature range depends also on customer design and cooling solution. Please contact us for options.

Physical Dimensions

  • Module size: 105 mm × 100 mm.  Please download the assembly diagram for exact numbers.

  • Mating height with standard connectors: 4 mm.

  • PCB thickness: 1.6 mm.

  • Highest part on PCB: approx. 13.5 mm. Please download the step model for exact numbers.

All dimensions are given in millimeters.

Figure 4: Module physical dimensions drawing.

Revision History

Hardware Revision History


DateRevision

Notes

PCNDocumentation Link
-

01

Prototypes



Table : Module hardware revision history.


Hardware revision number can be found on the PCB board together with the module model number separated by the dash.

Figure 5: Module hardware revision number.

Document Change History


Date

Revision

Contributors

Description

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy279.$Proxy4022#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]

Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy279.$Proxy4022#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]



2018-07-02

v.1

Initial document.

Table : Document change history.

Disclaimer

Data Privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

Document Warranty

The material contained in this document is provided “as is” and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.


Error rendering macro 'page-info'

Ambiguous method overloading for method jdk.proxy279.$Proxy4022#hasContentLevelPermission. Cannot resolve which method to invoke for [null, class java.lang.String, class com.atlassian.confluence.pages.Page] due to overlapping prototypes between: [interface com.atlassian.confluence.user.ConfluenceUser, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject] [interface com.atlassian.user.User, class java.lang.String, class com.atlassian.confluence.core.ContentEntityObject]


  • No labels