Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Download PDF version of this document.

Scroll pdf ignore

Table of Contents

Table of Contents

Overview

Scroll Only (inline)
Refer to https://wiki.trenz-electronic.de/display/PD/TE0745+TRM for online version of this manual and the rest of the available documentation.

The Trenz Electronic TE0745 is an industrial-grade module integrating a Xilinx Zynq SoC (XC7Z-030, XC7Z-035 or XC7Z-045), 1 GByte DDR3/L SDRAM, 32 MByte SPI Flash memory for configuration and operation and powerful switch-mode power supplies for all on-board voltages. A large number of configurable I/O's is provided via rugged high-speed stacking strips.

Key Features

  • Industrial/Commercial/Expanded grade Xilinx Zynq SoC (XCZ7030, XC7Z035, XC7Z045)

    • 250 FPGA PL I/Os (120 LVDS pairs possible)
    • 17 PS MIOs on B2B connector available
    • Temperature Grade: Expanded (-40 to +100 °C)
  • Dual-core ARM Cortex-A9 MPCore™ with CoreSight™
  • DDR3L SDRAM, 512MB or 1GB , 16 bit width address
  • 32 or 64 MByte QSPI Flash memory
  • 4 or 8 GTX transceiver lanes (XC7Z030 has 4) 
  • Gigabit Ethernet transceiver PHY
  • EEPROM for storing Ethernet MAC Address
  • Hi-speed USB 2.0 ULPI transceiver with full OTG support
  • Programmable quad clock generator
  • Temperature compensated RTC (real-time clock)
  • Plug-on module with 3 × 160-pin high-speed hermaphroditic strips
  • On-board high-efficiency DC-DC converters
  • System management
  • eFUSE bit-stream encryption
  • AES bit-stream encryption
  • User LED
  • Evenly-spread supply pins for good signal integrity
  • Rugged for shock and high vibration

Additional assembly options are available for cost or performance optimization upon request.

Block Diagram

Image Removed

Figure 1TE0745-02 Block Diagram.

Main Components

Image Removed Image Removed

Figure 2TE0745-02 SoC module.

  1. Xilinx Zynq XC7Z family SoC, U1
  2. 256 Mbit Quad SPI Flash memory Micron N25Q256A, U12
  3. Reference clock signal oscillator SiTime SiT8008BI @33.333333 MHz, U12
  4. Reference clock signal oscillator SiTime SiT8008BI @25.000000 MHz, U9
  5. Marvell Alaska 88E1512 Gigabit Ethernet PHY, U7
  6. Intelligent Memory 512 MByte DDR3L-1600 SDRAM (8 Banks a 32 MWords, 16-bit word width), U3
  7. TI TPS51206 DDR3 memory termination regulator with buffered reference voltage VTTREF, U18
  8. Intersil ISL12020MIRZ Real-Time-Clock, U24
  9. TI TCA9517 level-shifting I2C bus repeater, U17
  10. Red LED, D2
  11. Green LED, D1
  12. Intelligent Memory 512 MByte DDR3L-1600 SDRAM (8 banks a 32 MWords, 16 Bit word width), U5
  13. Altera Enpirion EN63A0QI 12A DC-DC PowerSoC @1.0V (VCCINT), U4
  14. TI TPS74401RGW LDO DC-DC regulator @1.2V (MGTAVTT), U8
  15. TI TPS72018DRVR LDO DC-DC regulator @1.8V (MGTAUX), U6
  16. TI TPS74401RGW LDO DC-DC regulator @1.0V (MGTAVCC), U11
  17. Silicon Labs Si5338A I2C Programmable Quad Clock Generator, U13
  18. Reference clock signal oscillator SiTime SiT8008BI @25.000 MHz, U21
  19. Samtec ST5-80-1.50-L-D-P-TR 160-pin stacking strips (2 rows a 80 positions), J3
  20. Samtec ST5-80-1.50-L-D-P-TR 160-pin stacking strips (2 rows a 80 positions), J1
  21. Samtec ST5-80-1.50-L-D-P-TR 160-pin stacking strips (2 rows a 80 positions), J2
  22. 256 Mbit Quad SPI Flash memory (Micron N25Q256A), U14
  23. Microchip USB3320 USB transceiver PHY , U32
  24. Reference clock signal oscillator SiTime SiT8008BI @52.000000 MHz, U33
  25. Microchip 24AA025E48 EEPROM for MAC address, U23
  26. Lattice Semiconductor MachXO2-256HC System Controller CPLD, U2

Initial Delivery State

...

Storage Device Name

...

Content

...

Notes

...

24AA025E48 EEPROM

...

User content, not programmed

...

SPI Flash OTP Area

...

Empty, not programmed

...

Except serial number programmed by flash vendor.

...

SPI Flash Quad Enable bit

...

Programmed

...

SPI Flash main array

...

Not programmed

...

eFUSE USER

...

Not programmed

...

eFUSE Security

...

Not programmed

...

Table 1: Initial delivery state.

Signals, Interfaces and Pins

Board to Board (B2B) I/O's

The B2B connectors are high-speed hermaphroditic stacking strips providing modular interface to the SoC's PL and PS I/Os. Both single ended and differential signaling LVDS pairs are supported.

...

All MIO banks are powered from on-module DC-DC power rail. All PL I/O Banks have separate VCCO pins in the B2B connectors, valid VCCO should be supplied from the baseboard.

For detailed information about the pin-out, please refer to the Pin-out Table.

The configuration of the I/O's MIO0, MIO12 ... MIO15 and MIO40 ... MIO51 are depending on the base-board peripherals connected to these pins.

MGT Lanes

MGT (Multi Gigabit Transceiver) lane consists of one transmit and one receive (TX/RX) differential pair, two signals each or four signals total per one MGT lane. Following table lists lane number, MGT bank number, transceiver type, signal schematic name, board-to-board pin connection and FPGA pins connection:

...

  • MGT_RX0_P
  • MGT_RX0_N
  • MGT_TX0_P
  • MGT_TX0_N

...

  • J3-50
  • J3-52
  • J3-51
  • J3-53

...

  • MGTHRXP0_112, AB4
  • MGTHRXN0_112, AB3
  • MGTHTXP0_112, AA2
  • MGTHTXN0_112, AA1

...

  • MGT_RX1_P
  • MGT_RX1_N
  • MGT_TX1_P
  • MGT_TX1_N

...

  • J3-56
  • J3-58
  • J3-57
  • J3-59

...

  • MGTHRXP1_112, Y4
  • MGTHRXN1_112, Y3
  • MGTHTXP1_112, W2
  • MGTHTXN1_112, W1

...

  • MGT_RX2_P
  • MGT_RX2_N
  • MGT_TX2_P
  • MGT_TX2_N

...

  • J3-62
  • J3-64
  • J3-63
  • J3-65

...

  • MGTHRXP2_112, V4
  • MGTHRXN2_112, V3
  • MGTHTXP2_112, U2
  • MGTHTXN2_112, U1

...

  • MGT_RX3_P
  • MGT_RX3_N
  • MGT_TX3_P
  • MGT_TX3_N

...

  • J3-68
  • J3-70
  • J3-69
  • J3-71

...

  • MGTHRXP3_112, T4
  • MGTHRXN3_112, T3
  • MGTHTXP3_112, R2
  • MGTHTXN3_112, R1

...

  • MGT_RX4_P
  • MGT_RX4_N
  • MGT_TX4_P
  • MGT_TX4_N

...

  • J1-23
  • J1-21
  • J1-22
  • J1-20

...

  • MGTHRXP0_111, AD8
  • MGTHRXN0_111, AD7
  • MGTHTXP0_111, AF8
  • MGTHTXN0_111, AF7

...

  • MGT_RX5_P
  • MGT_RX5_N
  • MGT_TX5_P
  • MGT_TX5_N

...

  • J1-17
  • J1-15
  • J1-16
  • J1-14

...

  • MGTHRXP1_111, AE6
  • MGTHRXN1_111, AE5
  • MGTHTXP1_111, AF4
  • MGTHTXN1_111, AF3

...

  • MGT_RX6_P
  • MGT_RX6_N
  • MGT_TX6_P
  • MGT_TX6_N

...

  • J1-11
  • J1-9
  • J1-10
  • J1-8

...

  • MGTHRXP2_111, AC6
  • MGTHRXN2_111, AC5
  • MGTHTXP2_111, AE2
  • MGTHTXN2_111, AE1

...

  • MGT_RX7_P
  • MGT_RX7_N
  • MGT_TX7_P
  • MGT_TX7_N

...

  • J1-5
  • J1-3
  • J1-4
  • J1-2

...

  • MGTHRXP3_111, AD4
  • MGTHRXN3_111, AD3
  • MGTHTXP3_111, AC2
  • MGTHTXN3_111, AC1

...

Below are listed MGT banks reference clock sources.

...

1) Note: MGT bank 111 not available at XC7Z030 Zynq SoC.

JTAG Interface

JTAG interface access is provided through the SoC's PS configuration bank 0 and is available on B2B connector J1.

...

Table 5: JTAG interface signals.

Note
JTAG_EN pin 148 in B2B connector J1 should be kept low or grounded for normal operation!

System Controller I/O's

Following special purpose pins are connected to System Controller CPLD:

...

During normal operating mode the JTAG_EN pin should be in the low state for JTAG signals to be forwarded to the Zynq SoC.
If JTAG_EN pin is set to high or left open the JTAG signals are forwarded to the System Controller CPLD.

...

Custom_table_size_100

Page properties
hiddentrue
idComments

Template Revision 2.15 (todo change key features to new style)

  • Module: TRM Name always "TE Series Name" +TRM
    Example: "TE0745 TRM"
  • Carrier: TRM Name usually "TEB Series Name" +TRM
    Example: "TEB0745 TRM"

Template Change history:

  • 2.14 to 2.15
    • add excerpt macro to key features
  • 2.13 to 2.14
    • add fix table of content
    • add table size as macro
  • 2.12 to 2.13
    • Changed controller Signals section


Page properties
hiddentrue
idComments

Important General Note:

  • If some section is configurable and depends on Firmware, please refer to the addition page (for example CPLD). If not available, add note, that this part is configurable
  • Designate all graphics and pictures with a number and a description, Use "Scroll Title" macro

    • Use "Scroll Title" macro for pictures and table labels. Figure number must be set manually at the moment (automatically enumeration is planned by scrollPDF)
      • Figure template:

        Scroll Title
        anchorFigure_anchorname
        titleText


        Scroll Ignore

        Create DrawIO object here: Attention if you copy from other page, objects are only linked.


        Scroll Only

        image link to the generate DrawIO PNG file of this page. This is a workaround until scroll pdf export bug is fixed



      • Table template:

        • Layout macro can be use for landscape of large tables

      • Scroll Title
        anchorTable_tablename
        titleText

        Scroll Table Layout
        orientationportrait
        sortDirectionASC
        repeatTableHeadersdefault
        style
        widths
        sortByColumn1
        sortEnabledfalse
        cellHighlightingtrue

        ExampleComment
        12



    • The anchors of the Scroll Title should be named consistant across TRMs. A incomplete list of examples is given below

      • <type>_<main section>_<name>

        • type: Figure, Table
        • main section:
          • "OV" for Overview
          • "SIP" for Signal Interfaces and Pins,
          • "OBP" for On board Peripherals,
          • "PWR" for Power and Power-On Sequence,
          • "B2B" for Board to Board Connector,
          • "TS" for Technical Specification
          • "VCP" for Variants Currently in Production
          •  "RH" for Revision History
        • name: custom, some fix names, see below
      • Fix names:
        • "Figure_OV_BD" for Block Diagram

        • "Figure_OV_MC" for Main Components

        • "Table_OV_IDS" for Initial Delivery State

        • "Table_PWR_PC" for Power Consumption

        • "Figure_PWR_PD" for Power Distribution
        • "Figure_PWR_PS" for Power Sequence
        • "Figure_PWR_PM" for Power Monitoring
        • "Table_PWR_PR" for Power Rails
        • "Table_PWR_BV" for Bank Voltages
        • "Table_TS_AMR" for Absolute_Maximum_Ratings

        • "Table_TS_ROC" for Recommended_Operating_Conditions

        • "Figure_TS_PD" for Physical_Dimensions
        • "Table_VCP_SO" for TE_Shop_Overview
        • "Table_RH_HRH" for Hardware_Revision_History

        • "Figure_RH_HRN" for Hardware_Revision_Number
        • "Table_RH_DCH" for Document_Change_History
    • Use Anchor in the document: add link macro and add "#<anchorname>
    • Refer to Anchror from external : <page url>#<pagename without space characters>-<anchorname>



Page properties
hiddentrue
idComments

-----------------------------------------------------------------------


Page properties
hiddentrue
idComments

Note for Download Link of the Scroll ignore macro:


Scroll Ignore

Download PDF version of this document.

Overview

Page properties
hiddentrue
idComments

Notes :

The Trenz Electronic TE0745 is an industrial/commercial/extended grade module integrating a Xilinx Zynq SoC (XC7Z-030, XC7Z-035 or XC7Z-045), 1 GByte DDR3/L SDRAM, 32/64 MByte SPI Flash memory for configuration and operation and powerful switch-mode power supplies for all on-board voltages. A large number of configurable I/O's is provided via rugged high-speed stacking strips.

Refer to http://trenz.org/te0745-info for the current online version of this manual and other available documentation.

Key Features

Page properties
hiddentrue
idComments

Note:
Use 'Key Features' description in shoping page, for example: https://shop.trenz-electronic.de/de/TE0728-04-1Q-SoC-Micromodul-mit-Xilinx-Automotive-Zynq-7020-512-MByte-DDR3L-6-x-6-cm

  • Industrial grade Xilinx Zynq SoC (XCZ7030, XC7Z035, XC7Z045)

    • 250 FPGA PL I/Os (120 LVDS pairs possible)
    • 17 PS MIOs on B2B connector available
  • Dual-core ARM Cortex-A9 MPCore™ with CoreSight™
  • 32 (2x16)-bit wide 1GB DDR3L SDRAM
  • 32/64 MByte QSPI Flash memory
  • 4 or 8 GTX transceiver lanes (XC7Z030 variant has 4)
  • 1 Gigabit Ethernet transceiver PHY
  • Two User LEDs
  • EEPROM for storing Ethernet MAC Address
  • Hi-speed USB 2.0 ULPI transceiver with full OTG support
  • Programmable quad clock generator
  • Temperature compensated RTC (real-time clock)
  • Board to Board (B2B)
    • Plug-on module with 3 × 160-pin high-speed connectors
  • Power Supply
    • 3.3 V
  • Others:
    • On-board high-efficiency DC-DC converters
    • System management
    • eFUSE bit-stream encryption
    • AES bit-stream encryption
    • Evenly-spread supply pins for good signal integrity
    • Rugged for shock and high vibration

Additional assembly options are available for cost or performance optimization upon request.

Block Diagram

Scroll Title
anchorFigure_OV_BD
titleTE0745 block diagram


Scroll Ignore

draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramDisplayName
lboxtrue
revision2
diagramNameTE0745_BD
simpleViewerfalse
width
linksauto
tbstylehidden
diagramWidth640



Scroll Only

Image Added


Main Components

Page properties
hiddentrue
idComments

Notes :

  • Picture of the PCB (top and bottom side) with labels of important components
  • Add List below


Scroll Title
anchorFigure_OV_BD
titleTE0745 main components


Scroll Ignore
draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramDisplayName
lboxtrue
revision1
diagramNameTE0745_OV_MC
simpleViewerfalse
width
linksauto
tbstylehidden
diagramWidth641



Scroll Only

Image Added


  1. Xilinx Zynq XC7Z family SoC, U1
  2. Quad SPI Flash memory, U14
  3. Reference clock signal oscillator, U12
  4. Reference clock signal oscillator, U9
  5. 1 Gigabit Ethernet PHY, U7
  6. DDR3L SDRAM (8 Banks a 32 MWords, 16-bit word width), U3
  7. DDR3 memory termination regulator with buffered reference voltage VTTREF, U18
  8. Real-Time-Clock, U24
  9. level-shifting I2C bus repeater, U17
  10. Red LED, D2
  11. Green LED, D1
  12. DDR3L SDRAM (8 Banks a 32 MWords, 16-bit word width), U5
  13. 12A DC-DC PowerSoC (VCCINT), U4
  14. DC-DC regulator (MGTAVTT), U8
  15. DC-DC regulator  (MGTAUX), U6
  16. DC-DC regulator  (MGTAVCC), U11
  17. I2C Programmable Quad Clock Generator, U13
  18. Reference clock signal oscillator, U21
  19. B2B Connector, J3
  20. B2B Connector, J1
  21. B2B Connector, J2
  22. Quad SPI Flash memory, U14
  23. USB transceiver PHY , U32
  24. Reference clock signal oscillator, U33
  25. EEPROM for MAC address, U23
  26. System Controller CPLD, U2

Initial Delivery State

Page properties
hiddentrue
idComments

Notes :

Only components like EEPROM, QSPI flash and DDR3 can be initialized by default at manufacture.

If there is no components which might have initial data ( possible on carrier) you must keep the table empty


Scroll Title
anchorTable_OV_IDS
titleInitial delivery state of programmable devices on the module

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Storage device name

Content

Notes

EEPROM

User content, not programmed

Valid MAC Address from manufacturer.

SPI Flash OTP Area

not programmed

Except serial number programmed by flash vendor.

SPI Flash Quad Enable bit

Programmed

-

SPI Flash main array

Not programmed

-

eFUSE USER

Not programmed

-

eFUSE Security

Not programmed

-
Si5338 OTP NVMNot programmedOTP not re-programmable after delivery from factory


Configuration Signals

Page properties
hiddentrue
idComments
  • Overview of Boot Mode, Reset, Enables.

BOOTMODE is connected to MIO4 and B2B Connector J2 (Pin 133) and BOOTMODE_1 is connected to MIO5 and System Controller CPLD and default high.

Scroll Title
anchorTable_OV_BP
titleBoot process.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Boot Mode

BOOTMODE_1 (MIO5)

 BOOTMODE (MIO4)

Note

JTAG Boot mode

00

JTAG only is only  possible with other CPLD Firmware

----01not supported
QSPI10
SD Card11



Scroll Title
anchorTable_OV_CNTRL
titleControl Pins

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Signal

B2BDirectionNote
RST_IN_NJ2-131Input
Low-active Power-On reset pin, controls POR_B-signal (

...

Bank 500

...

- C23)

...

PS_SRST

...

J2-152InputLow-active PS system-reset pin of Zynq chip.

...

Control line which sets in conjunction with signal 'BOOTMODE1' (B2B-pin J2-133)
the boot source of the Zynq chip. See section "Boot Modes".

Permanent logic high in standard SC-CPLD firmware.

...

Low active Enable-signal for activating PL supply voltage.

Permanent logic high in standard SC-CPLD firmware.

...

Table 6: System Controller CPLD special purpose I/O pins.

Quad SPI Interface

Quad SPI Flash (U14) is connected to the Zynq PS QSPI0 interface via PS MIO bank 500, pins MIO1 ... MIO6.

...

Table 7: MIO-pin assignment of the Quad SPI Flash memory IC.

Gigabit Ethernet Interface

On-board Gigabit Ethernet PHY (U7) is provided with Marvell Alaska 88E1512 IC. The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from the on-board 25.000000 MHz oscillator (U9). The 125MHz PHY output clock (PHY_CLK125M) is routed to the B2B connector J2 pin 150.

...

PHY_LED0: J2-144
PHY_LED1: J2-146

...

Table 8: Ethernet PHY interface connections.

USB Interface

USB PHY (U32) is provided by USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0. I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U33).

...

Table 9: USB PHY interface connections.

The schematics for the USB connector and required components is different depending on the USB usage. USB standard A or B connectors can be used for Host or Device modes. A Mini USB connector can be used for USB Device mode. A USB Micro connector can be used for Device mode, OTG Mode or Host Mode.

I2C Interface

...

JTAG_ENJ1-148InputLow FPGA access, high CPLD access


Signals, Interfaces and Pins

Page properties
hiddentrue
idComments

Notes :

  • For carrier or stand-alone boards use subsection for every connector type (add designator on description, not on the subsection title), for example:
    • SD
    • USB
    • ETH
    • FMC
    • ...
  • For modules which needs carrier use only classes and refer to B2B connector if more than one is used, for example
    • JTAG
    • UART
    • I2C
    • MGT
    • ...

Board to Board (B2B) I/Os

FPGA bank number and number of I/O signals connected to the B2B connector:

Scroll Title
anchorTable_SIP_B2B
titleGeneral PL I/O to B2B connectors information

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

FPGA Bank

Type

B2B ConnectorI/O Signal CountVoltage LevelNotes
12HRJ1

48 Diff (24 LVS pair),

2 Single ended

VCCIO_12
pins J1-54, J1-55
Voltage range 1.2V to 3.3V
13HRJ1

48 Diff (24 LVS pair),

2 Single ended

VCCIO_13
pins J1-112, J1-113
Voltage range 1.2V to 3.3V
33HPJ3

48 Diff (24 LVS pair),

2 Single ended

VCCIO_33
pins J3-115, J3-120
Voltage range 1.2V to 1.8V
34HPJ2

48 Diff (24 LVS pair),

2 Single ended

VCCIO_34
pins J2-29, J2-30
Voltage range 1.2V to 1.8V
35HPJ2

48 Diff (24 LVS pair),

2 Single ended

VCCIO_35
pins J2-87, J2-88
Voltage range 1.2V to 1.8V
500MIOJ251.8VMIO0, MIO12 ... MIO15, user configurable I/O's on B2B
501MIOJ3121.8VMIO40 ... MIO51, user configurable I/O's on B2B


System Controller I/O Pins

Scroll Title
anchorTable_SIP_CPLD
titleSystem Controller CPLD pins connection over B2B

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Pin NameDirectionFunctionB2BDefault Configuration
JTAG_ENInputJTAG selectJ1-148

During normal operating mode the JTAG_EN pin should be in the low state for JTAG signals to be forwarded to the Zynq SoC.
If JTAG_EN pin is set to high or left open the JTAG signals are forwarded to the System Controller CPLD.

RST_IN_NInputResetJ2-131Low-active Power-On reset pin, controls POR_B-signal (bank 500, pin C23) of Zynq chip.
PS_SRSTInputResetJ2-152Low-active PS system-reset pin of Zynq chip.
BOOTMODEInputBoot modeJ2-133

Control line which sets in conjunction with signal 'BOOTMODE_1' connected to CPLD(BOOTMODE_1 default high)
the boot source of the Zynq chip. See section "Configuration Signals".

PWR_PL_OKInputPower goodJ2-135Indicates stable state of PL supply voltage (low-active) after power-up sequence.
PWR_PS_OKInputPower goodJ2-139Indicates stable state of PS supply voltage (low-active) after power-up sequence.
MIO0InputPS MIOJ2-137User I/O also connected to CPLD.


JTAG Interface

JTAG interface access is provided through the SoC's PS configuration bank 0, it is connected to B2B connector J1.

Scroll Title
anchorTable_SIP_JTG
titleJTAG pins connection

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

JTAG Signal

B2B Connector

TMSJ1- 144
TDIJ1- 142
TDOJ1- 145
TCKJ1- 143
JTAG_ENJ1- 148


I2C Interface

The I2C interface on B2B connector J2 has PS_3.3V as reference voltage and is connected to the Zynq SoC via voltage level translating (3.3V ↔ 1.8V)

...

 I2C bus repeater (U17).

...

...

Scroll Title
anchorTable_SIP_I2C
title Pin assignment of the B2B I2C interface.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

SchematicB2BNotes

...

I2C_33_SCLJ2-1193.3V reference voltage

...

I2C_33_SDAJ2-1213.

...

3V reference voltage

...


Following on-module I2C interface

...

are connected to the same  I2C bus:

Scroll Title
anchorTable_SIP_I2C_ADD
title
MIO-pin assignment of the on-module

...

I2C interface.

Except the on-module RTC (U24), all other on-module I2C slave devices are operating with the reference voltage PS_1.8V.

I2C addresses for on-module devices are listed in the table below:

...

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

I2C Device I2C AddressNotes
Quad programmable PLL clock generator U16: pins 12 (SCL), 19 (SDA)0x70-
MAC Address EEPROM U23, pins 1 (SCL), 3 (SDA)0x53-
SC CPLD U2, bank 2, pins 16 (SDA), 17 (SCL)User programmable.-
RTC, U240x6F-
RTC RAM, U240x57-



I2C bus is accessible from SoC over following MIO:

...

Scroll Title
anchorTable_SIP_I2C
titleModule's

...

Boot Process

TE0745 module supports different boot modes which are configurable by the control line 'BOOTMODE' and 'BOOTMODE_1'. The line 'BOOTMODE' is available on B2B connector pin J2-133, the line 'BOOTMODE_1' is connected to the System Controller CPLD on bank 1, pin 21 (permanent logic high in standard SC-CPLD firmware).The boot mode selection will be set by the Zynq's PS MIO pins MIO3...MIO5.

Following table describes how to set the control lines to configure the boot mode:

...

JTAG

...

Table 13: Selectable boot modes.

In delivery state of the SoM the boot mode depends on the configured SC-CPLD firmware. Basically MIO5 is set to 1 and JTAG is in cascade.

On-board Peripherals

System Controller CPLD

The System Controller CPLD (U2) is provided by Lattice Semiconductor LCMXO2-256HC (MachXO2 Product Family). The  SC-CPLD is the central system management unit where essential control signals are logically linked by the implemented logic in CPLD firmware, which generates output signals to control the system, the on-board peripherals and the interfaces. Interfaces like JTAG and I2C between the on-board peripherals and to the FPGA-module are by-passed, forwarded and controlled by the System Controller CPLD.

Other tasks of the System Controller CPLD are the monitoring of the power-on sequence and to display the programming state of the FPGA module.

Quad SPI Flash Memory

On-board QSPI flash memory (U14) on the TE0745-02 is provided by Micron Serial NOR Flash Memory N25Q256A with 256 Mbit (32 MByte) storage capacity. This non volatile memory is used to store initial FPGA configuration. Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency used.

Note

SPI Flash QE (Quad Enable) bit must be set to high or FPGA is unable to load its configuration from flash during power-on. By default this bit is set to high at the manufacturing plant.

Gigabit Ethernet PHY

On-board Gigabit Ethernet PHY (U7) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U9), the 125MHz output clock signal CLK_125MHZ is connected to the pin J2-150 of B2B connector J2.

High-speed USB ULPI PHY

Hi-speed USB ULPI PHY (U32) is provided with USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0 via MIO28..39, bank 501 (see also section). The I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U33).

MAC Address EEPROM

A Microchip 24AA025E48 serial EEPROM (U23) contains a globally unique 48-bit node address, which is compatible with EUI-48(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. It is accessible over I2C bus with slave device address 0x53.

RTC - Real Time Clock

An temperature compensated Intersil ISL12020M is used as Real Time Clock (U24). Battery voltage must be supplied to the clock from the base board via pin 'VBAT_IN' (J1-146). Battery backed registers can be accessed over I2C bus at slave address 0x6F. General purpose RAM of the RTC can be accessed at I2C slave address 0x57. RTC IC is supported by Linux so it can be used as hwclock device. The interrupt line 'RTC_INT' of the RTC is connected to System Controller CPLD bank 3 pin 4.

Programmable PLL Clock (Phase-Locked Loop)

There is a Silicon Labs I2C programmable quad PLL clock generator Si5338A (U16) on-board. It's output frequencies can be programmed by using the I2C-bus with address 0x70.

A 25 MHz (U21) oscillator is connected to pin 3 (IN3) and is used to generate the output clocks.

Once running, the frequency and other parameters can be changed by programming the device using the I2C-bus connected between the Zynq module (master) and reference clock signal generator (slave).

...

IN1

...

CLKIN_P

...

Reference input clock from base board.

...

IN3

...

Reference input clock.

...

IN4

...

IN5

...

-

...

CLK0A

...

MGT_CLK1_P

...

MGT bank 112 reference clock.

...

MGT_CLK3_P

...

Table 14: Programmable quad PLL clock generator inputs and outputs.

Oscillators

The SoC module has following reference clocking signals provided by external baseboard sources and on-board oscillators:

...

SiTime SiT8008BI oscillator, U12

...

Table 15: Clock sources overview.

On-board LEDs

...

D1

...

Green

...

D2

...

Red

...

Zynq chip (U1), bank 0 (config bank), 'DONE' (pin W9)

...

Reflects inverted DONE signal. ON when FPGA is not configured, OFF as soon as PL is configured.

This LED remains OFF if System Controller CPLD can not power up the PL supply voltage.

I2C-Slave address overview.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

MIO PinSignal Schematic NameNotes
MIO 10I2C_SCL1.8V reference voltage
MIO 11I2C_SDA1.8V reference voltage


MGT Lanes

Scroll Title
anchorTable_SIP_MGT
titleMGT connections to B2B connector

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

LaneBankTypeSignal NameB2B PinNote
0112GTX

MGT_RX0_P

MGT_RX0_N

MGT_TX0_P

MGT_TX0_N

J3-50

J3-52

J3-51

J3-53


1112GTX

MGT_RX1_P

MGT_RX1_N

MGT_TX1_P

MGT_TX1_N

J3-56

J3-58

J3-57

J3-59


2112GTX

MGT_RX2_P

MGT_RX2_N

MGT_TX2_P

MGT_TX2_N

J3-62

J3-64

J3-63

J3-65


3112GTX

MGT_RX3_P

MGT_RX3_N

MGT_TX3_P

MGT_TX3_N

J3-68

J3-70

J3-69

J3-71


4111 1)GTX

MGT_RX4_P

MGT_RX4_N

MGT_TX4_P

MGT_TX4_N

J1-23

J1-21

J1-22

J1-20


5111 1)GTX

MGT_RX5_P

MGT_RX5_N

MGT_TX5_P

MGT_TX5_N

J1-17

J1-15

J1-16

J1-14


6111 1)GTX

MGT_RX6_P

MGT_RX6_N

MGT_TX6_P

MGT_TX6_N

J1-11

J1-9

J1-10

J1-8


7111 1)GTX

MGT_RX7_P

MGT_RX7_N

MGT_TX7_P

MGT_TX7_N

J1-5

J1-3

J1-4

J1-2



1) Note: MGT bank 111 not available at XC7Z030 Zynq SoC.

MIO Pins

Page properties
hiddentrue
idComments

you must fill the table below with group of MIOs which are connected to a specific components or peripherals, you do not have to specify pins in B2B, Just mention which B2B is connected to MIOs. The rest is clear in the Schematic.

Example:

MIO PinConnected toB2BNotes
MIO12...14

SPI_CS , SPI_DQ0... SPI_DQ3

SPI_SCK

J2QSPI



Scroll Title
anchorTable_OBP_MIOs
titleMIOs pins

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

MIO PinConnected toB2BNotes
MIO0CPLD and B2B J2-137J2Configurable, def. used for SD CD
MIO1...6

SPI_CS , SPI_DQ0... SPI_DQ3, SPI_SCK

-QSPI Flash
MIO7USB_RESET_N-10k pullup to PS_1.8V
MIO8Used for CPLD Status-10k pullup to PS_1.8V
MIO9ETH_PHY_RST_N-ETH PHY
MIO10....11SCL/SDA-I2C
MIO12...13-J2Configurable, def GPIO
MIO14...15UART
Configurable, def. used for UART
MIO16...27

ETH_TXCK, ETH_TXD0..3, ETH_TXCTL

ETH_RXCK, ETH_RXD0..3, ETH_RXCTL

-Ethernet Signals
MIO28...39

OTG_DATA4, OTG_DIR, OTG_STP, OTG_NXT,

OTG_DATA0...3, OTG_CLK, OTG_DATA5...7

-USB
MIO40...45MIO40..45J3Configurable, def. used for SD
MIO46...50-J3GPIO
MIO51I2C ResetJ3Configurable, def. used for I2C Reset
MIO52PHY_MDCJ3ETH PHY
MIO53PHY_MDIOJ3ETH PHY


On-board Peripherals

Page properties
hiddentrue
idComments

Notes :

  • add subsection for every component which is important for design, for example:
    • Two 100 Mbit Ethernet Transciever PHY
    • USB PHY
    • Programmable Clock Generator
    • Oscillators
    • eMMCs
    • RTC
    • FTDI
    • ...
    • DIP-Switches
    • Buttons
    • LEDs


Page properties
hiddentrue
idComments

Notes :

In the on-board peripheral table "chip/Interface" must be linked to the corresponding chapter or subsection


Scroll Title
anchorTable_OBP
titleOn board peripherals

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue


Quad SPI Flash Memory

Page properties
hiddentrue
idComments

Notes :

Minimum and Maximum density of quad SPI flash must be mentioned for other assembly options.

On-board QSPI flash memory (U14) on the TE0745-02 is provided by Micron Serial NOR Flash Memory 256/512 Mbit (32/64 MByte) storage capacity. This non volatile memory is used to store initial FPGA configuration. Besides FPGA configuration, remaining free flash memory can be used for user application and data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths. Maximum data rate depends on the selected bus width and clock frequency used. Quad SPI Flash (U14) is connected to the Zynq PS QSPI0 interface via PS MIO bank 500, pins MIO1 ... MIO6.

Scroll Title
anchorTable_OBP_SPI
titleQuad SPI interface MIOs and pins

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

MIO PinSchematicNotes
MIO1SPI-CS
MIO2SPI-DQ0/M0
MIO3SPI-DQ1/M1
MIO4SPI-DQ2/M2
MIO5SPI-DQ3/M3
MIO6SPI-SCK/M4


DDR3 SDRAM

The TE0745 SoM has two volatile Intelligent Memory 512 MByte DDR3L-1600 SDRAM IC for storing user application code and data. 

  • Part number: IM4G16D3FABG-125I
  • Supply voltage: 1.5V
  • Organization: 256M x 16 bits

DDR3 SDRAM can be varied on demand for other assembly options. DDR3 can have density of maximum 512MB due to available addressing. The maximum possible speed for DDR3 SDRAM is 1600 Mb/s.

RTC

An temperature compensated is used as Real Time Clock (U24). Battery voltage must be supplied to the clock from the base board via pin 'VBAT_IN' (J1-146). Battery backed registers can be accessed over I2C bus at slave address mentioned in the table below. General purpose RAM of the RTC can be accessed at I2C slave address 0x57. RTC IC is supported by Linux so it can be used as hwclock device.

The interrupt line 'RTC_INT' of the RTC is connected to System Controller CPLD bank 3 pin 4.

Scroll Title
anchorTable_OBP_I2C_RTC
titleI2C Address for RTC

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

SchematicB2BI2C AddressDesignatorNotes

I2C_33_SCL

J2-1190x6FU24

I2C_33_SDA

J2-121


Programmable PLL Clock

There is a Silicon Labs I2C programmable quad PLL clock generator (U16) on-board. It's output frequencies can be programmed by using the I2C-bus with address 0x70.

A 25.00 MHz (U21) oscillator is connected to pin 3 (IN3) and is used to generate the output clocks.

Once running, the frequency and other parameters can be changed by programming the device using the I2C-bus connected between the Zynq module (master) and reference clock signal generator (slave).

Scroll Title
anchorTable_OBP_PLL_CLK
titleProgrammable quad PLL clock generator inputs and outputs.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

U16 Pin
Signal Name / Description
Connected ToDirectionDefaultNote

IN1

CLKIN_P

B2B, J3-76Input

Reference input clock from base board.

IN2CLKIN_NB2B, J3-74Input

IN3

Reference input clock.

Oscillator U21, pin 3Input
25.000000 MHz oscillator, Si8008BI.

IN4

-GNDInput
I2C slave device address LSB (0x70 default address).

IN5

-

Not connected.Input
Not used.
IN6-GNDInput
Not used.

CLK0A

MGT_CLK1_P

Zynq Soc U1, pin U6OutputNot programmed

MGT bank 112 reference clock.

CLK0BMGT_CLK1_NZynq Soc U1, pin U5OutputNot programmed
CLK1ACLK1_PB2B, J3-80OutputNot programmedReference clock output to base board.
CLK1BCLK1_NB2B, J3-82OutputNot programmed
CLK2ACLK2_PB2B, J3-86OutputNot programmedReference clock output to base board.
CLK2BCLK2_PB2B, J3-88OutputNot programmed
CLK3A

MGT_CLK3_P

Zynq Soc U1, pin AA6OutputNot programmedMGT bank 111 reference clock.
CLK3BMGT_CLK3_NZynq Soc U1, pin AA6OutputNot programmed



System Controller CPLD

The System Controller CPLD (U2) is central system management unit where essential control signals are logically linked by the implemented logic in CPLD firmware, which generates output signals to control the system, the on-board peripherals and the interfaces. Interfaces like JTAG and I2C between the on-board peripherals and to the FPGA-module are by-passed, forwarded and controlled by the System Controller CPLD.

Other tasks of the System Controller CPLD are the monitoring of the power-on sequence and to display the programming state of the FPGA module.

For current CPLD Firmware description, check TE0745 CPLD

USB ULPI PHY

Hi-speed USB ULPI PHY (U32) is provided on the board. The ULPI interface is connected to the Zynq PS USB0 via MIO28..39, bank 501 (see also section). The I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.00 MHz oscillator (U33).

MAC Address EEPROM

A serial EEPROM (U23) contains a globally unique 48-bit node address, which is compatible with EUI-48(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores the 48-bit node address and is write protected, the other block is available for application use. 

EEPROM

Scroll Title
anchorTable_OBP_I2C_EEPROM
titleI2C address for EEPROM

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

SchematicMIOI2C AddressDesignatorNotes

I2C_SCL

MIO100x53U23

I2C_SDA

MIO11


Ethernet PHY

On-board Gigabit Ethernet PHY (U7) is provided on the board. The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.00 MHz oscillator (U9), the 125MHz output clock signal CLK_125MHZ is connected to the pin J2-150 of B2B connector J2. 

Scroll Title
anchorTable_SIP_B2B_Eth
titleEthernet PHY B2B connectors.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

SchematicB2BNotes
PHY_MDIO-Connected to MIO52
PHY_MDIO0+/ MDIO0-J2-120/122
PHY_MDIO1+/ MDIO1-J2-126/128
PHY_MDIO2+/ MDIO2-J2-132/134
PHY_MDIO3+/ MDIO3-J2-138/140
PHY_LED1J2-144
PHY_LED2J2-146
PHY_LED3J2-148
PHY_CLK125MJ2-150
PHY_MDC-Connected to MIO53


LEDs

Scroll Title
anchorTable_OBP_LED
titleOn-board LEDs

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

SchematicColorConnected toActive levelNoteNote

D1

Green

System Controller CPLD (bank 3, pin 5)HighSystem main status LED, blinking indicates system activity

D2

Red

Zynq chip, bank 0 (config bank), 'DONE' pin

Low

Reflects inverted DONE signal. ON when FPGA is not configured, OFF as soon as PL is configured.

This LED remains OFF if System Controller CPLD can not power up the PL supply voltage.



Clock Sources

Scroll Title
anchorTable_OBP_CLK
titleOsillators

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

DesignatorSchematic NameFrequencyNote
U21-25.00 MHzQuad PLL clock generator U16, pin 3

U12

PS_CLK33.33 MHzBank 500 (MIO0 bank), pin B24
U33OTG-RCLK52.00 MHzUSB 2.0 transceiver PHY U32, pin 26
U9ETH_CLKIN25.00 MHzGigabit Ethernet PHY U7, pin 34


Power and Power-On Sequence

Power Supply

Power supply with minimum current capability of 3.0 A for system startup is recommended.

Power Consumption

The maximum power consumption of a module mainly depends on the design which is running on the FPGA.

Scroll Title
anchorTable_PWR_PC
titlePower Consumption

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Power Input PinTypical Current
PL_VINTBD*
PS_VINTBD*
PS_3.3VTBD*


* TBD - To Be Determined

For the lowest power consumption and highest efficiency of on board DC-DC regulators it is recommended to powering the module from one single 3.3V supply. All input power supplies have a nominal value of 3.3V. Although the input power supplies can be powered up in any order, it is recommended to power them up simultaneously.

The on-board voltages of the TE0745 SoC module will be powered-up in order of a determined sequence after the external voltages 'PL_VIN', 'PS_VIN' and 'PS_3.3V' are available. All those power-rails can be powered up, with 3.3V power sources, also shared.

Warning
To avoid any damage to the module, check for stabilized on-board voltages should be carried out(i.e. power good and enable signals) before powering up any SoC's I/O bank voltages VCCO_x. All I/Os should be tri-stated during power-on sequence.

Core voltages and main supply voltages have to reach stable state and their "Power Good"-signals have to be asserted before other voltages like PL bank's I/O voltages can be powered up.

It is important that all baseboard I/Os are tri-stated at power-on until the "Power Good"-signals 'PWR_PS_OK' (J2-139) and 'PWR_PL_OK' (J2-135) are high, meaning that all on-module voltages have become stable and module is properly powered up.

Power Distribution Dependencies

Scroll Title
anchorFigure_PWR_PD
titlePower Distribution


Scroll Ignore
scroll-pdftrue
scroll-officetrue
scroll-chmtrue
scroll-docbooktrue
scroll-eclipsehelptrue
scroll-epubtrue
scroll-htmltrue

draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramDisplayName
lboxtrue
revision1
diagramNameTE0745_PWR_PD
simpleViewerfalse
width
linksauto
tbstylehidden
diagramWidth641


Scroll Only

Image Added



Note

Current rating of Samtec Razor Beam LP Terminal/Socket Strip ST5/SS5 B2B connectors is 1.5 A per pin (1 pin powered per row).

Power-On Sequence

The TE0745 SoM meets the recommended criteria to power up the Xilinx Zynq MPSoC properly by keeping a specific sequence of enabling the on-board DCDC converters dedicated to the particular functional units of the Zynq chip and powering up the on-board voltages.

Following diagram clarifies the sequence of enabling the particular on-board voltages, which will power-up in descending order as listed in the blocks of the diagram:

Scroll Title
anchorFigure_PWR_PS
titlePower Sequency


Scroll Ignore
draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramDisplayName
lboxtrue
revision1
diagramNameTE0745_PWR_PS
simpleViewerfalse
width
linksauto
tbstylehidden
diagramWidth640



Scroll Only

Image Added


The Enable-Signal 'EN_PL' is permanently logic high in standard SC-CPLD firmware. The "Power Good"-signals 'PWR_PS_OK' and 'PWR_PL_OK' (latter low-active, extern pull-up needed) are available B2B-connector J2 (pins J2-139, J2-135) and on the SC-CPLD.

Voltage Monitor Circuit

The voltages 'VCCPINT' and 'PS_1.8V' are monitored by the voltage monitor circuit U41, which generates the POR_B reset signal at Power-On. A manual reset is also possible by driving the MR-pin (available on J2-131 or SC-CPLD) to GND. Leave this pin unconnected or connect to VDD (PS_1.8V) when unused.

Scroll Title
anchorFigure_PWR_VMC
titleVoltage Monitor Circuit


Scroll Ignore
draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramDisplayName
lboxtrue
revision1
diagramNameTE0745_PWR_PM
simpleViewerfalse
width
linksauto
tbstylehidden
diagramWidth641



Scroll Only

Image Added


Power Rails

Scroll Title
anchorTable_PWR_PR
titleModule power rails.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Power Rail Name

B2B Connector

JM1 Pin

B2B Connector

JM2 Pin

B2B Connector

JM3 Pin

DirectionNotes
PL_VIN

147, 149, 151, 153,
155, 157, 159

--Inputmodule supply voltage
PS_VIN-154, 156, 158-Inputmodule supply voltage
PS_3.3V-160-Inputmodule supply voltage
VCCIO1254, 55--Inputhigh range bank I/O voltage
VCCIO13112, 113--Inputhigh range bank I/O voltage
VCCIO33--115, 120Inputhigh performance bank I/O voltage
VCCIO34-29, 30-Inputhigh performance bank I/O voltage
VCCIO35-87, 88-Inputhigh performance bank I/O voltage
VBAT_IN146--InputRTC (battery-backed) supply voltage
PS_1.8V-130-Outputinternal 1.8V voltage level (Process System)
PL_1.8V--84,85Outputinternal 1.8V voltage level (FPGA)


Bank Voltages

Scroll Title
anchorTable_PWR_BV
titleZynq SoC bank voltages.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Bank          

Schematic Name

Voltage

Notes
0 (config)VCCIO_0

PL_1.8V, if R67 is equipped
PS_1.8V, if R68 is equipped

-
500 (MIO0)PS_1.8V 1.8V-
501 (MIO1)PS_1.8V1.8V-
502 (DDR3)1.35V1.35V-
12 HRVCCIO_12UserHR: 1.2V to 3.3V
13 HRVCCIO_13UserHR: 1.2V to 3.3V
33 HPVCCIO_33UserHP: 1.2V to 1.8V



Board to Board Connectors

Page properties
hiddentrue
idComments
  • This section is optional and only for modules.
  • use "include page" macro and link to the general B2B connector page of the module series,

    For example: 6 x 6 SoM LSHM B2B Connectors

    Include Page
    6 x 6 SoM LSHM B2B Connectors
    6 x 6 SoM LSHM B2B Connectors

Include Page
5.2 x 7.6 SoM ST5 and SS5 B2B Connectors
5.2 x 7.6 SoM ST5 and SS5 B2B Connectors

Technical Specifications

Absolute Maximum Ratings

Scroll Title
anchorTable_TS_AMR
titlePS absolute maximum ratings

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

SymbolsDescriptionMinMaxUnit
PL_VIN-0.35VTI TPS720 data sheet
PS_VIN-0.37VTI TPS82085 data sheet
PS_3.3V3.1353.465V

3.3V nominal ± 5%


VBAT supply voltage-16.0VISL12020MIRZ data sheet
PL IO bank supply voltage for HR I/O banks (VCCO)-0.53.6V-

PL IO bank supply voltage for HP I/O banks (VCCO)

-0.52.0V-
I/O input voltage for HR I/O banks-0.4VCCO_X+0.55V-
I/O input voltage for HP I/O banks-0.55VCCO_X+0.55V-
GT receiver (RXP/RXN) and transmitter (TXP/TXN)-0.51.26V-

Voltage on module JTAG pins

-0.33.6

V

MachX02 Family data sheet

Storage temperature

-40

+128

°C

Limits of ISL12020MIRZ RTC chip.
Storage temperature without the ISL12020MIRZ-55+100°CLimits of DDR3 memory chip.


Attention: PS_3.3V is directly connected to numerous on-board peripherals as supply and I/O voltage.

Recommended Operating Conditions

Operating temperature range depends also on customer design and cooling solution. Please contact us for options.

Scroll Title
anchorTable_TS_ROC
titleRecommended operating conditions.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

ParameterMinMaxUnitsReference Document
PL_VIN3.24.5V-TI TPS720 data sheet
PS_VIN3.1353.6V-CPLD data sheets
PS_3.3V3.1353.465V-3.3V nominal ± 5%
VBAT_IN supply voltage2.75.5V-ISL12020MIRZ data sheet

PL I/O bank supply voltage for HR
I/O banks (VCCO)

1.143.465V-Xilinx datasheet DS191

PL I/O bank supply voltage for HP
I/O banks (VCCO)

1.141.89V-Xilinx datasheet DS191
I/O input voltage for HR I/O banks-0.20VCCO_X+0.20V-

Xilinx datasheet DS191

I/O input voltage for HP I/O banks-0.20VCCO_X+0.20V

-

Xilinx datasheet DS191
GT receiver (RXP/RXN) and transmitter (TXP/TXN)(*)(*)V(*) Check datasheetXilinx datasheet DS191
Voltage on Module JTAG pins3.1353.6VJTAG signals forwarded to
Zynq module config bank 0
MachX02 Family Data Sheet
Recommended Operating Temperatur-40+85°C


The module operating temperature range depends also on customer design and cooling solution. Please contact us for options.

Physical Dimensions

  • Module size: 52 mm × 76 mm.  Please download the assembly diagram for exact numbers

  • Mating height with standard connectors: 4mm

  • PCB thickness: 1.6mm

  • Highest part on PCB: approx. 3mm. Please download the step model for exact numbers

Scroll Title
anchorFigure_TS_PD
titlePhysical Dimension


Scroll Ignore
scroll-pdftrue
scroll-officetrue
scroll-chmtrue
scroll-docbooktrue
scroll-eclipsehelptrue
scroll-epubtrue
scroll-htmltrue

draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramDisplayName
lboxtrue
revision1
diagramNameTE0745_TS_PD
simpleViewerfalse
width
linksauto
tbstylehidden
diagramWidth641


Scroll Only
scroll-pdftrue
scroll-officetrue
scroll-chmtrue
scroll-docbooktrue
scroll-eclipsehelptrue
scroll-epubtrue
scroll-htmltrue

Image Added


Currently Offered Variants 

Page properties
hiddentrue
idComments

Set correct link to the shop page overview table of the product on English and German.

Example for TE0728:

ENG Page: https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/TE07XX-Zynq-SoC/TE0745-Zynq-SoC/

DEU Page: https://shop.trenz-electronic.de/de/Produkte/Trenz-Electronic/TE07XX-Zynq-SoC/TE0745-Zynq-SoC/

if not available, set.



Scroll Title
anchorTable_VCP_SO
titleTrenz Electronic Shop Overview

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Trenz shop TE0745 overview page
English pageGerman page


Revision History

Hardware Revision History

Product changes can be seen in TE0745 Product Change Notifications page.  

Scroll Title
anchorTable_RH_HRH
titleHardware Revision History

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

Date

Revision

Changes

Documentation Link

2016-11-0202
  • MAC EEPROM Address patch fixed on PCB
REV02
2016-05-1201
  • Prototypes
REV01


Hardware revision number can be found on the PCB board together with the module model number separated by the dash.

Scroll Title
anchorFigure_RV_HRN
titleBoard hardware revision number.


Scroll Ignore

draw.io Diagram
borderfalse
viewerToolbartrue
fitWindowfalse
diagramDisplayName
lboxtrue
revision1
diagramNameTE0745_RV_HRN
simpleViewerfalse
width
linksauto
tbstylehidden
diagramWidth237


Scroll Only

Image Added



Document Change History

Page properties
hiddentrue
idComments
  • Note this list must be only updated, if the document is online on public doc!
  • It's semi automatically, so do following
    • Add new row below first

    • Copy "Page Information Macro(date)" Macro-Preview, Metadata Version number, Author Name and description to the empty row. Important Revision number must be the same as the Wiki document revision number Update Metadata = "Page Information Macro (current-version)" Preview+1 and add Author and change description. --> this point is will be deleted on newer pdf export template

    • Metadata is only used of compatibility of older exports


Scroll Title
anchorTable_RH_DCH
titleDocument change history.

Scroll Table Layout
orientationportrait
sortDirectionASC
repeatTableHeadersdefault
style
widths
sortByColumn1
sortEnabledfalse
cellHighlightingtrue

DateRevisionContributorDescription

Page info
infoTypeModified date
dateFormatyyyy-MM-dd
typeFlat

Page info
infoTypeCurrent version
prefixv.
typeFlat
showVersionsfalse

Page info
infoTypeModified by
typeFlat
showVersionsfalse

  • Corrected limits for operating conditions of  PL/PS_VIN
  • Corrected MIO section (UARt)

v.102

Martin Rohrmüller

  • Corrected key features power supply voltage

v.98

John Hartfiel

  • typographical correction
  • block diagram correction

2020-02-18

v.94John Hartfiel
  • correction power rails
2019-11-19v.93John Hartfiel
  • correction key features
2019-10-10v.92Pedram Babakhani
  • document style update

  • description bug fix
2019-03-01v.83

Pedram Babakhani

  • Add power note
2018-04-11

Table 16: LEDs of the module.

Power and Power-On Sequence

Power Consumption

The maximum power consumption of a module mainly depends on the design which is running on the FPGA.

Xilinx provide a power estimator excel sheets to calculate power consumption. It's also possible to evaluate the power consumption of the developed design with Vivado. See also Trenz Electronic Wiki FAQ.

...

Power supply with minimum current capability of 3A for system startup is recommended.

For the lowest power consumption and highest efficiency of on board DC-DC regulators it is recommended to powering the module from one single 3.3V supply. All input power supplies have a nominal value of 3.3V. Although the input power supplies can be powered up in any order, it is recommended to power them up simultaneously.

The on-board voltages of the TE0745 SoC module will be powered-up in order of a determined sequence after the external voltages 'PL_VIN', 'PS_VIN' and 'PS_3.3V' are available. All those power-rails can be powered up, with 3.3V power sources, also shared.

Warning
To avoid any damage to the module, check for stabilized on-board voltages should be carried out(i.e. power good and enable signals) before powering up any SoC's I/O bank voltages VCCO_x. All I/Os should be tri-stated during power-on sequence.

Core voltages and main supply voltages have to reach stable state and their "Power Good"-signals have to be asserted before other voltages like PL bank's I/O voltages can be powered up.

It is important that all baseboard I/Os are tri-stated at power-on until the "Power Good"-signals 'PWR_PS_OK' (J2-139) and 'PWR_PL_OK' (J2-135) are high, meaning that all on-module voltages have become stable and module is properly powered up.

Power Distribution Dependencies

There are following dependencies how the initial voltages of the power rails on the B2B connectors are distributed to the on-board DCDC converters, which power up further DCDC converters and the particular on-board voltages:

Image Removed

Figure 3: Power Distribution Diagram

See Xilinx data sheet DS191 for additional information. User should also check related base board documentation when intending base board design for TE0745 module.

Note

Current rating of Samtec Razor Beam LP Terminal/Socket Strip ST5/SS5 B2B connectors is 1.5 A per pin (1 pin powered per row).

Power-On Sequence Diagram

The TE0745 SoM meets the recommended criteria to power up the Xilinx Zynq MPSoC properly by keeping a specific sequence of enabling the on-board DCDC converters dedicated to the particular functional units of the Zynq chip and powering up the on-board voltages.

Following diagram clarifies the sequence of enabling the particular on-board voltages, which will power-up in descending order as listed in the blocks of the diagram:

Image Removed

Figure 4: Power-On Sequence

The Enable-Signal 'EN_PL' is permanently logic high in standard SC-CPLD firmware. The "Power Good"-signals 'PWR_PS_OK' and 'PWR_PL_OK' (latter low-active, extern pull-up needed) are available B2B-connector J2 (pins J2-139, J2-135) and on the SC-CPLD.

Voltage Monitor Circuit

The voltages 'VCCPINT' and 'PS_1.8V' are monitored by the voltage monitor circuit U41, which generates the POR_B reset signal at Power-On. A manual reset is also possible by driving the MR-pin (available on J2-131 or SC-CPLD) to GND. Leave this pin unconnected or connect to VDD (PS_1.8V) when unused.

Image Removed

Figure 5: Voltage monitor circuit.

Power Rails

...

Voltages on B2B
Connectors

...

B2B J1 Pin

...

B2B J2 Pin

...

Input/
Output

...

147, 149, 151, 153,
155, 157, 159

...

Table 18: Power rails of the SoC module on B2B connectors.

Bank Voltages

...

Bank

...

Voltage

...

Voltage Range

...

PL_1.8V, if R67 is equipped
PS_1.8V, if R68 is equipped

...

Table 19: Range of SoC module's bank voltages.

B2B connectors

...

Variants Currently In Production

...

SoC Junction Temperature

...

Table 20: Module variants.

Technical Specification

Absolute Maximum Ratings

...

Parameter

...

Units

...

Notes

...

3.3V nominal ± 5%

Attention: PS_3.3V is directly connected to numerous
on-board peripherals as supply and I/O voltage.

...

PL IO bank supply voltage for HP I/O banks (VCCO)

...

Voltage on module JTAG pins

...

V

...

Storage temperature

...

-40

...

+85

...

°C

...

Table 21: Module absolute maximum ratings.

Note
Assembly variants for higher storage temperature range are available on request.

Recommended Operating Conditions

...

PL I/O bank supply voltage for HR
I/O banks (VCCO)

...

PL I/O bank supply voltage for HP
I/O banks (VCCO)

...

Xilinx datasheet DS191

...

-

...

Table 22: Module recommended operating conditions.

Note
Please check Xilinx datasheet DS191 (for XC7Z030) for complete list of absolute maximum and recommended operating ratings.

Operating Temperature Ranges

Commercial grade: 0°C to +70°C.

Industrial grade: -40°C to +85°C.

Extended grade: 0°C to +85°C.

The module operating temperature range depends also on customer design and cooling solution. Please contact us for options.

Physical Dimensions

  • Module size: 52 mm × 76 mm.  Please download the assembly diagram for exact numbers

  • Mating height with standard connectors: 4mm

  • PCB thickness: 1.6mm

  • Highest part on PCB: approx. 3mm. Please download the step model for exact numbers

All dimensions are given in millimeters.

   Image Removed         Image Removed

Figure 6: Physical dimensions of the TE0745 SoC module.

Revision History

Hardware Revision History

...

Notes

...

  • First Production release
  • Refer to Changes list in Schematic for
    further details in changes to REV01

...

  • Prototypes

...

Hardware revision number is written on the PCB board together with the module model number separated by the dash.

Image Removed

Figure 7: TE0745 module revision number.

Document Change History 

...

Revision

...

Page info
infoTypeCurrent version
dateFormatyyyy-MM-dd
typeFlat

...

Page info
infoTypeModified by
dateFormatyyyy-MM-dd
typeFlat

...

  • add power note

...

v.81John Hartfiel
  • correction PDF link
2017-11-14

...

v.80John Hartfiel
  • Update B2B Section
2017-11-13

...

v.79Ali Naseri, Jan Kumann, John Hartfiel
  • First TRM release

...

--

all

Page info
infoTypeModified users
typeFlat
showVersionsfalse

  • --


Disclaimer

Include Page
IN:Legal Notices
IN:Legal Notices

...




Scroll Only


HTML
<style>
.wiki-content .columnLayout .cell.aside {
width: 0%;
}</style>



Scroll pdf ignore


Custom_fix_page_content

Table of contents

Table of Contents
outlinetrue